
Doc. Number: G91902 Revision: 006US

Intel® True Scale Fabric OFED+ Host
Software
User Guide

July 2015

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
2 Doc. Number: G91902 Revision: 006US

Legal Lines and DisclaimersNo license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.
Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose,
and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.
This document contains information on products, services and/or processes in development. All information provided here is subject to change without
notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.
The products and services described may contain defects or errors which may cause deviations from published specifications.
You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described
herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed
herein.
Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling
1-800-548-4725, or by visiting: http://www.intel.com/design/literature.htm
Intel, the Intel logo, Intel Xeon Phi, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2015, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 3

Contents

Contents

1.0 Introduction .. 11
1.1 Overview.. 11
1.2 Interoperability ... 11
1.3 Intended Audience... 11
1.4 How this Guide is Organized ... 12
1.5 Related Materials... 12
1.6 Documentation Conventions.. 13
1.7 License Agreements... 13
1.8 Technical Support.. 14

2.0 Step-by-Step Cluster Setup and MPI Usage Checklists ... 15
2.1 Cluster Setup.. 15
2.2 Using MPI... 15

3.0 True Scale Cluster Setup and Administration ... 17
3.1 Introduction.. 17
3.2 Installed Layout .. 17
3.3 True Scale and OpenFabrics Driver Overview... 18
3.4 IPoIB Network Interface Configuration ... 19
3.5 IPoIB Administration .. 20

3.5.1 Stop, Start and Restart the IPoIB Driver .. 20
3.5.2 Configure IPoIB .. 20

3.6 IB Bonding ... 21
3.6.1 Interface Configuration Scripts.. 21
3.6.2 Verify IB Bonding is Configured... 23

3.7 Subnet Manager Configuration .. 25
3.8 Intel Distributed Subnet Administration .. 26

3.8.1 Applications that use Distributed SA .. 26
3.8.2 Virtual Fabrics and the Distributed SA.. 26
3.8.3 Configuring the Distributed SA.. 26
3.8.4 Default Configuration .. 27
3.8.5 Multiple Virtual Fabrics Example.. 27
3.8.6 Virtual Fabrics with Overlapping Definitions .. 28
3.8.7 Distributed SA Configuration File... 30

3.9 Changing the MTU Size .. 32
3.10 Managing the True Scale Driver... 32

3.10.1 Configure the True Scale Driver State .. 33
3.10.2 Start, Stop, or Restart True Scale Driver .. 33
3.10.3 Unload the Driver/Modules Manually.. 33
3.10.4 True Scale Driver Filesystem .. 34

3.11 More Information on Configuring and Loading Drivers... 34
3.12 Performance Settings and Management Tips ... 35

3.12.1 Performance Tuning .. 35
3.12.2 Performance Tuning using ipath_perf_tuning Tool 42
3.12.3 Homogeneous Nodes... 44
3.12.4 Adapter and Other Settings .. 44
3.12.5 Remove Unneeded Services ... 45

3.13 Host Environment Setup for MPI.. 46
3.13.1 Configuring for ssh.. 46
3.13.2 Process Limitation with ssh.. 49

3.14 Checking Cluster and Software Status .. 49
3.14.1 ipath_control .. 49

Contents

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
4 Doc. Number: G91902 Revision: 006US

3.14.2 iba_opp_query...49
3.14.3 ibstatus..51
3.14.4 ibv_devinfo ..51
3.14.5 ipath_checkout...52

4.0 Running MPI on Intel HCAs ..53
4.1 Introduction ..53

4.1.1 MPIs Packaged with Intel OFED+...53
4.2 Open MPI..53

4.2.1 Installation ...53
4.2.2 Setup ..53
4.2.3 Compiling Open MPI Applications...54
4.2.4 Create the mpihosts File...54
4.2.5 Running Open MPI Applications ...54
4.2.6 Further Information on Open MPI ..55
4.2.7 Configuring MPI Programs for Open MPI ...55
4.2.8 To Use Another Compiler ..56
4.2.9 Process Allocation..58
4.2.10 mpihosts File Details..63
4.2.11 Using Open MPI’s mpirun ..64
4.2.12 Console I/O in Open MPI Programs ..65
4.2.13 Environment for Node Programs ..66
4.2.14 Environment Variables ...68
4.2.15 Job Blocking in Case of Temporary Link Failures69

4.3 Open MPI and Hybrid MPI/OpenMP Applications ...70
4.4 Debugging MPI Programs..70

4.4.1 MPI Errors ..71
4.4.2 Using Debuggers ...71

5.0 Using Other MPIs ...73
5.1 Introduction ..73
5.2 Installed Layout...73
5.3 Open MPI..74
5.4 MVAPICH ..74

5.4.1 Compiling MVAPICH Applications ...74
5.4.2 Running MVAPICH Applications..75
5.4.3 Further Information on MVAPICH...75

5.5 MVAPICH2 ..75
5.5.1 Compiling MVAPICH2 Applications..75
5.5.2 Running MVAPICH2 Applications ..75
5.5.3 Further Information on MVAPICH2 ...76

5.6 Managing MVAPICH, and MVAPICH2
with the mpi-selector Utility ...76

5.7 Platform MPI 8 ..77
5.7.1 Installation ...77
5.7.2 Setup ..77
5.7.3 Compiling Platform MPI 8 Applications..77
5.7.4 Running Platform MPI 8 Applications ..77
5.7.5 More Information on Platform MPI 8...78

5.8 Intel MPI ...78
5.8.1 Installation ...78
5.8.2 Setup ..78
5.8.3 Compiling Intel MPI Applications..79
5.8.4 Running Intel MPI Applications ..80
5.8.5 Further Information on Intel MPI ...81

5.9 Improving Performance of Other MPIs Over IB Verbs ..81

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 5

Contents

6.0 SHMEM Description and Configuration ... 83
6.1 Overview.. 83
6.2 Interoperability ... 83
6.3 Installation ... 83
6.4 SHMEM Programs .. 84

6.4.1 Basic SHMEM Program... 84
6.4.2 Compiling SHMEM Programs... 85
6.4.3 Running SHMEM Programs ... 86

6.5 Intel SHMEM Relationship with MPI .. 87
6.6 Slurm Integration .. 88

6.6.1 Full Integration... 88
6.6.2 Two-step Integration... 88
6.6.3 No Integration.. 88

6.7 Sizing Global Shared Memory.. 89
6.8 Progress Model.. 90

6.8.1 Active Progress... 90
6.8.2 Passive Progress ... 91
6.8.3 Active versus Passive Progress.. 91

6.9 Environment Variables ... 91
6.10 Implementation Behavior ... 93
6.11 Application Programming Interface .. 94
6.12 SHMEM Benchmark Programs.. 99

7.0 Virtual Fabric support in PSM .. 103
7.1 Introduction.. 103
7.2 Virtual Fabric Support .. 103
7.3 Using SL and PKeys ... 103
7.4 Using Service ID ... 104
7.5 SL2VL mapping from the Fabric Manager .. 104
7.6 Verifying SL2VL tables on Intel 7300 Series HCAs .. 104

8.0 PSM Multi-rail .. 107
8.1 User Base... 107
8.2 Environment Variables ... 107
8.3 Examples of Single- and Multi-rail.. 107

9.0 Dispersive Routing .. 111

10.0 gPXE.. 113
10.1 gPXE Setup .. 113

10.1.1 Required Steps ... 113
10.2 Preparing the DHCP Server in Linux ... 114

10.2.1 Installing DHCP .. 114
10.2.2 Configuring DHCP ... 114

10.3 Netbooting Over IB.. 115
10.3.1 Prerequisites .. 116
10.3.2 Boot Server Setup... 116
10.3.3 Steps on the gPXE Client.. 123

10.4 HTTP Boot Setup ... 123

A Benchmark Programs .. 125
A.1 Benchmark 1: Measuring MPI Latency Between Two Nodes 125
A.2 Benchmark 2: Measuring MPI Bandwidth Between Two Nodes 126
A.3 Benchmark 3: Messaging Rate Microbenchmarks ... 128

A.3.1 OSU Multiple Bandwidth / Message Rate test (osu_mbw_mr)...................... 128
A.3.2 An Enhanced Multiple Bandwidth / Message Rate test

(mpi_multibw)... 129

Contents

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
6 Doc. Number: G91902 Revision: 006US

B Integration with a Batch Queuing System ..133
B.1 Clean Termination of MPI Processes ...133
B.2 Clean-up PSM Shared Memory Files..134

C Troubleshooting...135
C.1 Using LEDs to Check the State of the HCA...135
C.2 BIOS Settings ...136
C.3 Kernel and Initialization Issues ..136

C.3.1 Driver Load Fails Due to Unsupported Kernel ..136
C.3.2 Rebuild or Reinstall Drivers if Different Kernel Installed..............................136
C.3.3 InfiniPath Interrupts Not Working..136
C.3.4 OpenFabrics Load Errors if ib_qib Driver Load Fails....................................137
C.3.5 InfiniPath ib_qib Initialization Failure ..138
C.3.6 MPI Job Failures Due to Initialization Problems..139

C.4 OpenFabrics and InfiniPath Issues..139
C.4.1 Stop Infinipath Services Before Stopping/Restarting InfiniPath....................139
C.4.2 Manual Shutdown or Restart May Hang if NFS in Use139
C.4.3 Load and Configure IPoIB Before Loading SDP ..139
C.4.4 Set $IBPATH for OpenFabrics Scripts ..140
C.4.5 SDP Module Not Loading..140
C.4.6 ibsrpdm Command Hangs when Two HCAs are Installed

but Only Unit 1 is Connected to the Switch...140
C.4.7 Outdated ipath_ether Configuration Setup Generates Error.........................140

C.5 System Administration Troubleshooting ..141
C.5.1 Broken Intermediate Link...141

C.6 Performance Issues..141
C.6.1 Large Message Receive Side Bandwidth Varies with

Socket Affinity on Opteron Systems ..141
C.6.2 Erratic Performance ..141
C.6.3 Performance Warning if ib_qib Shares Interrupts with eth0143

C.7 Open MPI Troubleshooting ..143
C.7.1 Invalid Configuration Warning ..143

C.8 HPL Residual Error Failure...144

D Write Combining ..145
D.1 Introduction..145
D.2 PAT and Write Combining..145
D.3 MTRR Mapping and Write Combining ..145

D.3.1 Edit BIOS Settings to Fix MTRR Issues ...146
D.3.2 Use the ipath_mtrr Script to Fix MTRR Issues..146

D.4 Verify Write Combining is Working ...146

E Commands and Files ..149
E.1 Check Cluster Homogeneity with ipath_checkout ...149
E.2 Restarting InfiniPath ..149
E.3 Summary and Descriptions of Commands ...149

E.3.1 dmesg...151
E.3.2 iba_opp_query ..151
E.3.3 iba_hca_rev..154
E.3.4 iba_manage_switch...166
E.3.5 iba_packet_capture...167
E.3.6 ibhosts ...168
E.3.7 ibstatus ...168
E.3.8 ibtracert ...169
E.3.9 ibv_devinfo..169
E.3.10 ident...170

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 7

Contents

E.3.11 ipath_checkout.. 170
E.3.12 ipath_control ... 172
E.3.13 ipath_mtrr ... 173
E.3.14 ipath_pkt_test.. 173
E.3.15 ipathstats ... 174
E.3.16 lsmod .. 174
E.3.17 modprobe... 174
E.3.18 mpirun .. 174
E.3.19 mpi_stress ... 175
E.3.20 rpm .. 175
E.3.21 strings .. 175

E.4 Common Tasks and Commands... 176
E.5 Summary and Descriptions of Useful Files... 177

E.5.1 boardversion ... 177
E.5.2 status_str ... 177
E.5.3 version .. 178

E.6 Summary of Configuration Files... 179

F Recommended Reading ... 181
F.1 References for MPI .. 181
F.2 Books for Learning MPI Programming... 181
F.3 Reference and Source for SLURM... 181
F.4 InfiniBand*... 181
F.5 OpenFabrics ... 181
F.6 Clusters ... 181
F.7 Networking... 181
F.8 Rocks .. 182
F.9 Other Software Packages ... 182

Contents

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
8 Doc. Number: G91902 Revision: 006US

Figures
1 Intel OFED+ Software Structure...17
2 Distributed SA Default Configuration...27
3 Distributed SA Multiple Virtual Fabrics Example ..27
4 Distributed SA Multiple Virtual Fabrics Configured Example ..28
5 Virtual Fabrics with Overlapping Definitions ...28
6 Virtual Fabrics with PSM_MPI Virtual Fabric Enabled..29
7 Virtual Fabrics with all SIDs assigned to PSM_MPI Virtual Fabric29
8 Virtual Fabrics with Unique Numeric Indexes..30
9 Single fabric, each node has two cards, Unit 0 has one port, Unit 1 has two ports108
10 Multi-fabrics, with same subnet ID..108
11 Multi-fabrics, with same subnet ID, and abnormal wiring ...109
12 Multi-fabrics, with different subnet IDs..109
13 Multi-fabrics, with different subnet IDs, and abnormal wiring110
14 Screenshot of Linpack test results showing residual failure.......................................144

Tables
1 ibmtu Values ...32
2 krcvqs Parameter Settings...37
3 Checks Performed by ipath_perf_tuning Tool ...42
4 ipath_perf_tuning Tool Options ...43
5 Test Execution Modes ...43
6 Open MPI Wrapper Scripts...54
7 Command Line Options for Scripts..54
8 Intel Compilers ..57
9 Portland Group (PGI) Compilers ..57
10 Environment Variables Relevant for any PSM ...68
11 Environment Variables Relevant for Open MPI ..69
12 Other Supported MPI Implementations..73
13 MVAPICH Wrapper Scripts ...74
14 MVAPICH Wrapper Scripts ...75
15 Platform MPI 8 Wrapper Scripts...77
16 Intel MPI Wrapper Scripts ..80
17 SHMEM Run Time Library Environment Variables ..92
18 shmemrun Environment Variables ..93
19 SHMEM Application Programming Interface Calls ..94
20 Intel SHMEM micro-benchmarks options..100
21 Intel SHMEM random access benchmark options...100
22 Intel SHMEM all-to-all benchmark options..101
23 Intel SHMEM barrier benchmark options ..101
24 Intel SHMEM reduce benchmark options ..102
25 LED Link and Data Indicators ...135
26 Useful Programs...150
27 Common Tasks and Commands Summary ...176
28 Useful Files..177
29 status_str File Contents ..178
30 Status—Other Files ..178
31 Configuration Files..179

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 9

Revision History

Revision History

Date Revision Description

May, 2013 001US Initial Intel® release

Sept. 2013 002US Added information in Troubleshooting section for HPL Residual Error Failure

December 2013 003US Updated Table 10, “Environment Variables Relevant for any PSM” in Section 4.2.14, “Environment
Variables” on page 68

July, 2014 004US Updated the Support link in Section 1.8, “Technical Support” on page 14.

January, 2015 005US

• Updated Table 10, “Environment Variables Relevant for any PSM” in Section 4.2.14,
“Environment Variables” on page 68

• Updated the section “AMD CPU Systems” on page 38
• Updated the section “Typical tuning for recent Intel CPUs” on page 39

July 2015 006US Document revision incremented for release 7.4.

Revision History

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
10 Doc. Number: G91902 Revision: 006US

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 11

Introduction

1.0 Introduction

The Intel® True Scale Fabric OFED+ Host Software User Guide shows end users how to
use the installed software to setup the fabric. End users include both the cluster
administrator and the Message-Passing Interface (MPI) application programmers, who
have different but overlapping interests in the details of the technology.

For specific instructions about installing the Intel QLE7340, QLE7342, QMH7342, and
QME7342 PCI Express* (PCIe*) adapters see the Intel® True Scale Fabric Adapter
Hardware Installation Guide, and the initial installation of the Fabric Software, see the
Intel® True Scale Fabric Software Installation Guide.

1.1 Overview
The material in this documentation pertains to an Intel® True Scale Fabric OFED+ Host
Software cluster. A cluster is defined as a collection of nodes, each attached to a fabric
through the Intel interconnect.

The Intel® True Scale Fabric Host Channel Adapters (HCA) are True Scale 4X adapters.
The quad data rate (QDR) adapters (QLE7300 and QMH7300 series) have a raw data
rate of 40Gbps (data rate of 32Gbps). The QLE7300 and QMH7300 series adapters can
also run in DDR or SDR mode.

The Intel HCA utilize standard, off-the-shelf InfiniBand* 4X switches and cabling. The
Intel interconnect is designed to work with all InfiniBand*-compliant switches.

Note: If you are using the QLE7300 series HCAs in QDR mode, a QDR switch must be used.

Intel OFED+ software is interoperable with other vendors’ IBTA InfiniBand*-compliant
adapters running compatible OFED releases. There are several options for subnet
management in your cluster:

• An embedded subnet manager can be used in one or more managed switches. Intel
offers the Embedded Fabric Manager (EFM) for both DDR and QDR switch product
lines supplied by your True Scale switch vendor.

• A host-based subnet manager can be used. Intel provides the Intel® True Scale
Suite Fabric Manager (FM), as a part of the Intel® True Scale Fabric Suite (IFS).

1.2 Interoperability
Intel OFED+ participates in the standard IB subnet management protocols for
configuration and monitoring. Note that:

• Intel OFED+, including Internet Protocol over InfiniBand* (IPoIB), is interoperable
with other vendors’ InfiniBand*-compliant adapters running compatible OFED
releases.

• In addition to supporting running MPI over verbs, Intel provides a
high-performance InfiniBand*-compliant vendor-specific protocol, known as PSM.
MPIs run over PSM will not inter-operate with other adapters.

Introduction

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
12 Doc. Number: G91902 Revision: 006US

Note: See the OpenFabrics web site at www.openfabrics.org for more information on the
OpenFabrics Alliance.

1.3 Intended Audience
This guide is intended for end users responsible for administration of a cluster network
as well as for end users who want to use that cluster.

This guide assumes that all users are familiar with cluster computing, that the cluster
administrator is familiar with Linux* administration, and that the application
programmer is familiar with MPI, vFabrics, and Distributed SA.

1.4 How this Guide is Organized
The Intel® True Scale Fabric OFED+ Host Software User Guide is organized into these
sections:

• Chapter 1.0, “Introduction,” provides an overview and describes interoperability.
• Chapter 2.0, “Step-by-Step Cluster Setup and MPI Usage Checklists,” describes

how to setup your cluster to run high-performance MPI jobs.
• Chapter 3.0, “True Scale Cluster Setup and Administration,” describes the lower

levels of the supplied Intel OFED+ Host software. This section is of interest to a
True Scale cluster administrator.

• Chapter 4.0, “Running MPI on Intel HCAs,” helps the Message Passing Interface
(MPI) programmer make the best use of the Open MPI implementation. Examples
are provided for compiling and running MPI programs.

• Chapter 5.0, “Using Other MPIs,” gives examples for compiling and running MPI
programs with other MPI implementations.

• Chapter 7.0, “Virtual Fabric support in PSM,” describes Intel Performance Scaled
Messaging (PSM) that provides support for full Virtual Fabric (vFabric) integration,
allowing users to specify InfiniBand* Service Level (SL) and Partition Key (PKey), or
to provide a configured Service ID (SID) to target a vFabric.

• Chapter 9.0, “Dispersive Routing,” describes dispersive routing in the True Scale
fabric to avoid congestion hotspots by “sraying” messages across the multiple
potential paths.

• Chapter 10.0, “gPXE,” describes open-source Preboot Execution Environment
(gPXE) boot including installation and setup.

• Appendix A, “Benchmark Programs,” describes how to run Intel’s performance
measurement programs.

• Appendix B, “Integration with a Batch Queuing System,” describes two methods the
administrator can use to allow users to submit MPI jobs through batch queuing
systems.

• Appendix C, “Troubleshooting,” provides information for troubleshooting
installation, cluster administration, and MPI.

• Appendix D, “Write Combining,” provides instructions for checking write combining
and for using the Page Attribute Table (PAT) and Memory Type Range Registers
(MTRR).

• Appendix E, “Commands and Files,” contains useful programs and files for
debugging, as well as commands for common tasks.

• Appendix F, “Recommended Reading,” contains a list of useful web sites and
documents for a further understanding of the True Scale Fabric, and related
information.

http://www.openfabrics.org

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 13

Introduction

In addition, the Intel® True Scale Fabric Adapter Hardware Installation Guide contains
information on Intel hardware installation and the Intel® True Scale Fabric Software
Installation Guide contains information on Intel software installation.

1.5 Related Materials
• Intel® True Scale Fabric Adapter Hardware Installation Guide
• Intel® True Scale Fabric Software Installation Guide
• Release Notes

1.6 Documentation Conventions
This guide uses the following documentation conventions:

• Note: provides additional information.
• Caution: indicates the presence of a hazard that has the potential of causing

damage to data or equipment.
• Warning: indicates the presence of a hazard that has the potential of causing

personal injury.
• Text in blue font indicates a hyperlink (jump) to a figure, table, or section in this

guide, and links to Web sites are also shown in blue. For example:
— Table 2 lists problems related to the user interface and remote agent.
— See “Installation Checklist” on page 6.
— For more information, visit www.intel.com.

• Text in bold font indicates user interface elements such as menu items, buttons,
check boxes, or column headings. For example:
— Click the Start button, point to Programs, point to Accessories, and then

click Command Prompt.
— Under Notification Options, select the Warning Alarms check box.

• Text in Courier font indicates a file name, directory path, or command line text.
For example:
— To return to the root directory from anywhere in the file structure:

Type cd /root and press Enter.
— Enter the following command: sh ./install.bin

• Key names and key strokes are indicated with uppercase:
— Press ctrl+P.
— Press the up arrow key.

• Text in italics indicates terms, emphasis, variables, or document titles. For
example:
— For a complete listing of license agreements, refer to the Intel Software End

User License Agreement.
— What are shortcut keys?
— To enter the date type mm/dd/yyyy (where mm is the month, dd is the day,

and yyyy is the year).
• Topic titles between quotation marks identify related topics either within this

manual or in the online help throughout this document.

Introduction

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
14 Doc. Number: G91902 Revision: 006US

1.7 License Agreements
Refer to the Intel Software End User License Agreement for a complete listing of all
license agreements affecting this product.

1.8 Technical Support
Intel True Scale Technical Support for products under warranty is available during local
standard working hours excluding Intel Observed Holidays. For customers with
extended service, consult your plan for available hours. For Support information, see
the Support link at www.intel.com/truescale.

§ §

http://www.intel.com/truescale

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 15

Step-by-Step Cluster Setup and MPI Usage Checklists

2.0 Step-by-Step Cluster Setup and MPI Usage
Checklists

This section describes how to set up your cluster to run high-performance Message
Passing Interface (MPI) jobs.

2.1 Cluster Setup
Perform the following tasks when setting up the cluster. These include BIOS, adapter,
and system settings.
1. Make sure that hardware installation has been completed according to the

instructions in the Intel® True Scale Fabric Adapter Hardware Installation Guide
and software installation and driver configuration has been completed according to
the instructions in the Intel® True Scale Fabric Software Installation Guide. To
minimize management problems, the compute nodes of the cluster must have very
similar hardware configurations and identical software installations. See
“Homogeneous Nodes” on page 46 for more information.

2. Check that the BIOS is set properly according to the instructions in the Intel® True
Scale Fabric Adapter Hardware Installation Guide.

3. Set up the Distributed Subnet Administration (SA) to correctly synchronize your
virtual fabrics. See “Intel Distributed Subnet Administration” on page 27

4. Adjust settings, including setting the appropriate MTU size. See “Adapter and Other
Settings” on page 46.

5. Remove unneeded services. See “Remove Unneeded Services” on page 47.
6. Disable powersaving features. See “Host Environment Setup for MPI” on page 48.
7. Check other performance tuning settings. See “Performance Settings and

Management Tips” on page 36.
8. Set up the host environment to use ssh. Two methods are discussed in “Host

Environment Setup for MPI” on page 48.
9. Verify the cluster setup. See “Checking Cluster and Software Status” on page 51.

2.2 Using MPI
1. Verify that the Intel hardware and software has been installed on all the nodes you

will be using, and that ssh is set up on your cluster (see all the steps in the Cluster
Setup checklist).

2. Setup Open MPI. See “Setup” on page 58.
3. Compile Open MPI applications. See “Compiling Open MPI Applications” on page 58
4. Create an mpihosts file that lists the nodes where your programs will run. See

“Create the mpihosts File” on page 59.
5. Run Open MPI applications. See “Running Open MPI Applications” on page 59.

Step-by-Step Cluster Setup and MPI Usage Checklists

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
16 Doc. Number: G91902 Revision: 006US

6. Configure MPI programs for Open MPI. See “Configuring MPI Programs for Open
MPI” on page 60

7. To test using other MPIs that run over PSM, such as MVAPICH, MVAPICH2, Platform
MPI, and Intel MPI, see Section 5.0, “Using Other MPIs” on page 77.

8. To switch between multiple versions of MVAPICH, use the mpi-selector. See
“Managing MVAPICH, and MVAPICH2 with the mpi-selector Utility” on page 80.

9. Refer to “Performance Tuning” on page 36 to read more about runtime
performance tuning.

10. Refer to Section 5.0, “Using Other MPIs” on page 77 to learn about using other MPI
implementations.

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 17

True Scale Cluster Setup and Administration

3.0 True Scale Cluster Setup and Administration

This section describes what the cluster administrator needs to know about the Intel
OFED+ software and system administration.

3.1 Introduction
The True Scale driver ib_qib, Intel Performance Scaled Messaging (PSM), accelerated
Message-Passing Interface (MPI) stack, the protocol and MPI support libraries, and
other modules are components of the Intel OFED+ software. This software provides the
foundation that supports the MPI implementation.

Figure 3-1 illustrates these relationships. Note that HP-MPI, Platform MPI, Intel MPI,
MVAPICH, MVAPICH2, and Open MPI can run either over PSM or OpenFabrics* User
Verbs.

3.2 Installed Layout
This section describes the default installed layout for the Intel OFED+ software and
Intel-supplied MPIs.

Intel-supplied Open MPI, MVAPICH, and MVAPICH2 RPMs with PSM support and
compiled with GCC, PGI, and the Intel compilers are installed in directories using the
following format:

Figure 3-1. Intel OFED+ Software Structure

InfiniBand*/OpenFabrics

User Verbs

MPI Applications

Intel® OFED+ Driver ib_qib

Kernel Space

uMAD APIUser Space

Intel OFED+
Communication
Library (PSM)

Intel OFED+

Hardware

TCP/IP

IPoIB

Intel® adapter

Pl
at

fo
rm

 M
PI

M
VA

PI
C
H

O
pe

n
M

PI

M
VA

PI
C
H

O
pe

n
M

PI

In
te

l M
PI

Intel® FM

M
VA

PI
C
H

2
Common

In
te

l M
PI

uDAPL

Pl
at

fo
rm

 M
PI

M
VA

PI
C
H

2

SRP

True Scale Cluster Setup and Administration

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
18 Doc. Number: G91902 Revision: 006US

/usr/mpi/<compiler>/<mpi>-<mpi_version>-qlc

For example:/usr/mpi/gcc/openmpi-1.8.1-qlc

Intel OFED+ utility programs, are installed in:

/usr/bin

/sbin

/opt/iba/*

Documentation is found in:

/usr/share/man

Intel OFED+ Host Software user documentation can be found on the Intel web site on
the software download page for your distribution.

Configuration files are found in:

/etc/sysconfig

Init scripts are found in:

/etc/init.d

The True Scale driver modules in this release are installed in:

/lib/modules/$(uname -r)/ updates/kernel/drivers/infiniband/hw/qib

Most of the other OFED modules are installed under the infiniband subdirectory.
Other modules are installed under:

/lib/modules/$(uname -r)/updates/kernel/drivers/net

The RDS modules are installed under:

/lib/modules/$(uname -r)/updates/kernel/net/rds

3.3 True Scale and OpenFabrics Driver Overview
The True Scale ib_qib module provides low-level Intel hardware support, and is the
base driver for both MPI/PSM programs and general OpenFabrics protocols such as
IPoIB and sockets direct protocol (SDP). The driver also supplies the Subnet
Management Agent (SMA) component.

The following is a list of the optional configurable OpenFabrics components and their
default settings:

• IPoIB network interface. This component is required for TCP/IP networking for
running IP traffic over the True Scale link. It is not running until it is configured.

• OpenSM. This component is disabled at startup. Intel recommends using the Intel®
True Scale Suite Fabric Manager (FM), which is included with the IFS or optionally
available within the Intel switches. The FM or OpenSM can be installed on one or
more nodes with only one node being the master SM.

• SRP (OFED modules). SRP is not running until the module is loaded and the SRP
devices on the fabric have been discovered.

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 19

True Scale Cluster Setup and Administration

• MPI over uDAPL (can be used by Intel MPI). IPoIB must be configured before MPI
over uDAPL can be set up.

Other optional drivers can now be configured and enabled, as described in “IPoIB
Network Interface Configuration” on page 19.

Complete information about starting, stopping, and restarting the Intel OFED+ services
are in “Managing the True Scale Driver” on page 33.

3.4 IPoIB Network Interface Configuration
The following instructions show you how to manually configure your OpenFabrics IPoIB
network interface. Intel recommends using the Intel OFED+ Host Software Installation
package or the iba_config tool. For larger clusters, Intel® True Scale Fabric Suite
FastFabric (FF) can be used to automate installation and configuration of many nodes.
These tools automate the configuration of the IPoIB network interface. This example
assumes that you are using sh or bash as your shell, all required Intel OFED+ and
OpenFabric’s RPMs are installed, and your startup scripts have been run (either
manually or at system boot).

For this example, the IPoIB network is 10.1.17.0 (one of the networks reserved for
private use, and thus not routable on the Internet), with a /8 host portion. In this case,
the netmask must be specified.

This example assumes that no hosts files exist, the host being configured has the IP
address 10.1.17.3, and DHCP is not used.

Note: Instructions are only for this static IP address case. Configuration methods for using
DHCP will be supplied in a later release.
1. Type the following command (as a root user):

ifconfig ib0 10.1.17.3 netmask 0xffffff00

2. To verify the configuration, type:

ifconfig ib0

ifconfig ib1
The output from this command will be similar to:

ib0 Link encap:InfiniBand HWaddr

00:00:00:02:FE:80:00:00:00:00:00:00:00:00:00:00:00:00:00:00

inet addr:10.1.17.3 Bcast:10.1.17.255 Mask:255.255.255.0

UP BROADCAST RUNNING MULTICAST MTU:4096 Metric:1

RX packets:0 errors:0 dropped:0 overruns:0 frame:0

TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:128

RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

3. Type:

True Scale Cluster Setup and Administration

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
20 Doc. Number: G91902 Revision: 006US

ping -c 2 -b 10.1.17.255
The output of the ping command will be similar to the following, with a line for
each host already configured and connected:

WARNING: pinging broadcast address

PING 10.1.17.255 (10.1.17.255) 517(84) bytes of data.

174 bytes from 10.1.17.3: icmp_seq=0 ttl=174 time=0.022 ms

64 bytes from 10.1.17.1: icmp_seq=0 ttl=64 time=0.070 ms (DUP!)

64 bytes from 10.1.17.7: icmp_seq=0 ttl=64 time=0.073 ms (DUP!)
The IPoIB network interface is now configured.

4. Restart (as a root user) by typing:

/etc/init.d/openibd restart

Note: The configuration must be repeated each time the system is rebooted.

Note: IPoIB-CM (Connected Mode) is enabled by default. The setting in
/etc/infiniband/openib.conf is SET_IPOIB_CM=yes. To use datagram mode,
change the setting to SET_IPOIB_CM=no. Setting can also be changed when asked
during initial installation (./INSTALL).

3.5 IPoIB Administration

3.5.1 Stop, Start and Restart the IPoIB Driver

Intel recommends using the Intel® Fabric Installer TUI or iba_config command to
enable autostart for the IPoIB driver. Refer to the Intel® True Scale Fabric Software
Installation Guide for more information. For using the command line to stop, start, and
restart the IPoIB driver use the following commands.

To stop the IPoIB driver, use the following command:

/etc/init.d/openibd stop

To start the IPoIB driver, use the following command:

/etc/init.d/openibd start

To restart the IPoIB driver, use the following command:

/etc/init.d/openibd restart

3.5.2 Configure IPoIB

Intel recommends using the Intel® Fabric Installer TUI, fastfabric command, or
iba_config command to configure the boot time and autostart of the IPoIB driver.
Refer to the Intel® True Scale Fabric Software Installation Guide for more information
on using the Intel® Fabric Installer TUI. Refer to the Intel® True Scale Fabric Suite
FastFabric User Guide for more information on using FF. For using the command line to
configure the IPoIB driver, edit the IPoIB configuration file as follows:

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 21

True Scale Cluster Setup and Administration

1. For each IP Link Layer interface, create an interface configuration file,
/etc/sysconfig/network/ifcfg-NAME, where NAME is the value of the NAME
field specified in the CREATE block. The following is an example of the
ifcfg-NAME file:

DEVICE=ib1

BOOTPROTO=static

BROADCAST=192.168.18.255

IPADDR=192.168.18.120

NETMASK=255.255.255.0

ONBOOT=yes

NM_CONTROLLED=no

Note: For IPoIB, the INSTALL script for the adapter now helps the user create the ifcfg
files.
2. After modifying the /etc/sysconfig/ipoib.cfg file, restart the IPoIB driver

with the following:

/etc/init.d/openibd restart

3.6 IB Bonding
IB bonding is a high availability solution for IPoIB interfaces. It is based on the Linux
Ethernet Bonding Driver and was adopted to work with IPoIB. The support for IPoIB
interfaces is only for the active-backup mode, other modes should not be used. Intel
supports bonding across HCA ports and bonding port 1 and port 2 on the same HCA.

3.6.1 Interface Configuration Scripts

Create interface configuration scripts for the ibX and bondX interfaces. Once the
configurations are in place, perform a server reboot, or a service network restart. For
SLES operating systems (OS), a server reboot is required. Refer to the following
standard syntax for bonding configuration by the OS.

Note: For all of the following OS configuration script examples that set MTU, MTU=65520 is
valid only if all IPoIB slaves operate in connected mode and are configured with the
same value. For IPoIB slaves that work in datagram mode, use MTU=2044. If the MTU
is not set correctly or the MTU is not set at all (set to the default value), performance of
the interface may be lower.

3.6.1.1 Red Hat Enterprise Linux*

The following is an example for bond0 (master). The file is named
/etc/sysconfig/network-scripts/ifcfg-bond0:

DEVICE=bond0

IPADDR=192.168.1.1

NETMASK=255.255.255.0

True Scale Cluster Setup and Administration

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
22 Doc. Number: G91902 Revision: 006US

NETWORK=192.168.1.0

BROADCAST=192.168.1.255

ONBOOT=yes

BOOTPROTO=none

USERCTL=no

MTU=65520

BONDING_OPTS="primary=ib0 updelay=0 downdelay=0"

The following is an example for ib0 (slave). The file is named
/etc/sysconfig/network-scripts/ifcfg-ib0:

DEVICE=ib0

USERCTL=no

ONBOOT=yes

MASTER=bond0

SLAVE=yes

BOOTPROTO=none

TYPE=InfiniBand

PRIMARY=yes

The following is an example for ib1 (slave 2). The file is named
/etc/sysconfig/network-scripts/ifcfg-ib1:

DEVICE=ib1

USERCTL=no

ONBOOT=yes

MASTER=bond0

SLAVE=yes

BOOTPROTO=none

TYPE=InfiniBand

Add the following lines to the RHEL file /etc/modprobe.d/ib_qib.conf:

alias bond0 bonding

options bond0 miimon=100 mode=1 max_bonds=1

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 23

True Scale Cluster Setup and Administration

3.6.1.2 SuSE Linux* Enterprise Server (SLES)

The following is an example for bond0 (master). The file is named
/etc/sysconfig/network-scripts/ifcfg-bond0:

DEVICE="bond0"

TYPE="Bonding"

IPADDR="192.168.1.1"

NETMASK="255.255.255.0"

NETWORK="192.168.1.0"

BROADCAST="192.168.1.255"

BOOTPROTO="static"

USERCTL="no"

STARTMODE="onboot"

BONDING_MASTER="yes"

BONDING_MODULE_OPTS="mode=active-backup miimon=100 primary=ib0
updelay=0 downdelay=0"

BONDING_SLAVE0=ib0

BONDING_SLAVE1=ib1

MTU=65520

The following is an example for ib0 (slave). The file is named
/etc/sysconfig/network-scripts/ifcfg-ib0:

DEVICE='ib0'

BOOTPROTO='none'

STARTMODE='off'

WIRELESS='no'

ETHTOOL_OPTIONS=''

NAME=''

USERCONTROL='no'

IPOIB_MODE='connected'

The following is an example for ib1 (slave 2). The file is named
/etc/sysconfig/network-scripts/ifcfg-ib1:

True Scale Cluster Setup and Administration

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
24 Doc. Number: G91902 Revision: 006US

DEVICE='ib1'

BOOTPROTO='none'

STARTMODE='off'

WIRELESS='no'

ETHTOOL_OPTIONS=''

NAME=''

USERCONTROL='no'

IPOIB_MODE='connected'

Verify the following line is set to the value of yes in /etc/sysconfig/boot:

RUN_PARALLEL="yes"

3.6.2 Verify IB Bonding is Configured

After the configuration scripts are updated, and the service network is restarted or a
server reboot is accomplished, use the following CLI commands to verify that IB
bonding is configured.

• cat /proc/net/bonding/bond0

• # ifconfig

Example of cat /proc/net/bonding/bond0 output:

cat /proc/net/bonding/bond0

Ethernet Channel Bonding Driver: v3.2.3 (December 6, 2007)

Bonding Mode: fault-tolerance (active-backup) (fail_over_mac)

Primary Slave: ib0

Currently Active Slave: ib0

MII Status: up

MII Polling Interval (ms): 100

Up Delay (ms): 0

Down Delay (ms): 0

Slave Interface: ib0

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 25

True Scale Cluster Setup and Administration

MII Status: up

Link Failure Count: 0

Permanent HW addr: 80:00:04:04:fe:80

Slave Interface: ib1

MII Status: up

Link Failure Count: 0

Permanent HW addr: 80:00:04:05:fe:80

Example of ifconfig output:

st2169:/etc/sysconfig # ifconfig

bond0 Link encap:InfiniBand HWaddr
80:00:00:02:FE:80:00:00:00:00:00:00:00:00:00:00:00:00:00:00

 inet addr:192.168.1.1 Bcast:192.168.1.255
Mask:255.255.255.0

 inet6 addr: fe80::211:7500:ff:909b/64 Scope:Link

 UP BROADCAST RUNNING MASTER MULTICAST MTU:65520 Metric:1

 RX packets:120619276 errors:0 dropped:0 overruns:0 frame:0

 TX packets:120619277 errors:0 dropped:137 overruns:0
carrier:0

 collisions:0 txqueuelen:0

 RX bytes:10132014352 (9662.6 Mb) TX bytes:10614493096
(10122.7 Mb)

ib0 Link encap:InfiniBand HWaddr
80:00:00:02:FE:80:00:00:00:00:00:00:00:00:00:00:00:00:00:00

 UP BROADCAST RUNNING SLAVE MULTICAST MTU:65520 Metric:1

 RX packets:118938033 errors:0 dropped:0 overruns:0 frame:0

 TX packets:118938027 errors:0 dropped:41 overruns:0
carrier:0

 collisions:0 txqueuelen:256

 RX bytes:9990790704 (9527.9 Mb) TX bytes:10466543096

True Scale Cluster Setup and Administration

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
26 Doc. Number: G91902 Revision: 006US

(9981.6 Mb)

ib1 Link encap:InfiniBand HWaddr
80:00:00:02:FE:80:00:00:00:00:00:00:00:00:00:00:00:00:00:00

 UP BROADCAST RUNNING SLAVE MULTICAST MTU:65520 Metric:1

 RX packets:1681243 errors:0 dropped:0 overruns:0 frame:0

 TX packets:1681250 errors:0 dropped:96 overruns:0 carrier:0

 collisions:0 txqueuelen:256

 RX bytes:141223648 (134.6 Mb) TX bytes:147950000 (141.0 Mb)

3.7 Subnet Manager Configuration
Intel recommends using the Intel® True Scale Suite Fabric Manager (FM) to manage
your fabric. Refer to the Intel® True Scale Fabric Suite Fabric Manager User Guide for
information on configuring the FM.

OpenSM is a component of the OpenFabrics project that provides a Subnet Manager
(SM) for the fabric. This package can optionally be installed on any machine, but only
needs to be enabled on the machine in the cluster that will act as a subnet manager.
You cannot use OpenSM if any of your fabric switches provide a subnet manager, or if
you are running a host-based SM, for example the FM.

Warning: Don’t run OpenSM with FM in the same fabric.

If you are using the Installer tool, you can set the OpenSM default behavior at the time
of installation.

OpenSM only needs to be enabled on the node that acts as the subnet
manager.Toenable OpenSM the iba_config command can be used or the chkconfig
command (as a root user) can be used on the node where it will be run. The
chkconfig command to enable the OpenSM is:

chkconfig opensmd on

The chkconfig command to disable it on reboot is:

chkconfig opensmd off

You can start opensmd without rebooting your machine by typing:

/etc/init.d/opensmd start

You can stop opensmd by typing:

/etc/init.d/opensmd stop

If you want to pass any arguments to the OpenSM program, modify the following file,
and add the arguments to the OPTIONS variable:

/etc/init.d/opensmd

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 27

True Scale Cluster Setup and Administration

For example:

Use the UPDN algorithm instead of the Min Hop algorithm.
OPTIONS="-R updn"

For more information on OpenSM, see the OpenSM man pages, or look on the
OpenFabrics web site.

3.8 Intel Distributed Subnet Administration
As True Scale clusters are scaled into the Petaflop range and beyond, a more efficient
method for handling queries to the FM is required. One of the issues is that while the
FM can configure and operate that many nodes, under certain conditions it can become
overloaded with queries from those same nodes.

For example, consider a fabric consisting of 1,000 nodes, each with 4 processors. When
a large MPI job is started across the entire fabric, each process needs to collect path
records for every other node in the fabric. Every single process is going to be querying
the subnet manager for these path records at roughly the same time. This amounts to
a total of 3.9 million path queries just to start the job.

In the past, MPI implementations have side-stepped this problem by hand crafting path
records themselves, but this solution cannot be used if advanced fabric management
techniques such as virtual fabrics and mesh/torus configurations are being used. In
such cases, only the subnet manager itself has enough information to correctly build a
path record between two nodes.

The Distributed Subnet Administration (SA) solves this problem by allowing each node
to locally replicate the path records needed to reach the other nodes on the fabric. At
boot time, each Distributed SA queries the subnet manager for information about the
relevant parts of the fabric, backing off whenever the subnet manager indicates that it
is busy. Once this information is in the Distributed SA's database, it is ready to answer
local path queries from MPI or other applications. If the fabric changes (due to a switch
failure or a node being added or removed from the fabric) the Distributed SA updates
the affected portions of the database. The Distributed SA can be installed and run on
any node in the fabric. It is only needed on nodes running SHMEM and MPI
applications.

3.8.1 Applications that use Distributed SA

The Intel PSM Library has been extended to take advantage of the Distributed SA.
Therefore, all MPIs that use the Intel PSM library can take advantage of the Distributed
SA. Other applications must be modified specifically to take advantage of it. For
developers writing applications that use the Distributed SA, refer to the header file
/usr/include/Infiniband/ofedplus_path.h for information on using
Distributed SA APIs. This file can be found on any node where the Distributed SA is
installed. For further assistance please contact Intel Support.

3.8.2 Virtual Fabrics and the Distributed SA

The IBTA standard states that applications can be identified by a Service ID (SID). The
FM uses SIDs to identify applications. One or more applications can be associated with
a Virtual Fabric using the SID. The Distributed SA is designed to be aware of Virtual
Fabrics, but to only store records for those Virtual Fabrics that match the SIDs in the
Distributed SA's configuration file. The Distributed SA recognizes when multiple SIDs
match the same Virtual Fabric and will only store one copy of each path record within a
Virtual Fabric. SIDs that match more than one Virtual Fabric will be associated with a
single Virtual Fabric. The Virtual Fabrics that do not match SIDs in the Distributed SA's
database will be ignored.

http://www.openfabrics.org/index.php

True Scale Cluster Setup and Administration

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
28 Doc. Number: G91902 Revision: 006US

3.8.3 Configuring the Distributed SA

In order to absolutely minimize the number of queries made by the Distributed SA, it is
important to configure it correctly, both to match the configuration of the FM and to
exclude those portions of the fabric that will not be used by applications using the
Distributed SA. The configuration file for the Distributed SA is named
/etc/sysconfig/iba/dist_sa.conf.

3.8.4 Default Configuration

As shipped, the FM creates a single virtual fabric, called “Default” and maps all nodes
and Service IDs to it, and the Distributed SA ships with a configuration that lists a set
of thirty-one SIDs, 0x1000117500000000 through 0x100011750000000f and 0x1
through 0xf. This results in an arrangement like the one shown in Figure 3-2

If you are using the FM in its default configuration, and you are using the standard Intel
PSM SIDs, this arrangement will work fine and you will not need to modify the
Distributed SA's configuration file - but notice that the Distributed SA has restricted the
range of SIDs it cares about to those that were defined in its configuration file.
Attempts to get path records using other SIDs will not work, even if those other SIDs
are valid for the fabric. When using this default configuration it is necessary that MPI
applications only be run using one of these 32 SIDs.

3.8.5 Multiple Virtual Fabrics Example

A person configuring the physical fabric may want to limit how much bandwidth MPI
applications are permitted to consume. In that case, they may re-configure the FM,
turning off the “Default” Virtual Fabric and replacing it with several other Virtual
Fabrics.

In Figure 3-3, the administrator has divided the physical fabric into four virtual fabrics:
“Admin” (used to communicate with the FM), “Storage” (used by SRP), “PSM_MPI”
(used by regular MPI jobs) and a special “Reserved” fabric for special high-priority jobs.

Figure 3-2. Distributed SA Default Configuration

Virtual Fabric “Default”
Pkey: 0xffff

SID Range: 0 x0-0 xffffffffffffffff

Infiniband Fabric

Virtual Fabric “Default”
Pkey: 0xffff

SID Range: 0x1-0xf
SID Range: 0x 1000117500000000-0x 100011750000000f

Distributed SA

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 29

True Scale Cluster Setup and Administration

Due to the fact that the Distributed SA was not configured to include the SID Range
0x10 through 0x1f, it has simply ignored the “Reserved” VF. Adding those SIDs to the
intel_sa.conf file solves the problem as shown in Figure 3-4.

3.8.6 Virtual Fabrics with Overlapping Definitions

As defined, SIDs should never be shared between Virtual Fabrics. Unfortunately, it is
very easy to accidentally create such overlaps. Figure 3-5 shows an example with
overlapping definitions.

Figure 3-3. Distributed SA Multiple Virtual Fabrics Example

Virtual Fabric “Admin”
Pkey: 0x7fff

Infiniband Fabric

Virtual Fabric
“PSM_MPI”

Pkey: 0x8003
SID Range: 0x1-0xf

SID Range:
0x1000117500000000-
0x100011750000000f

Virtual Fabric “Storage”
Pkey: 0x8001

SID:
0x0000494353535250

Virtual Fabric
“Reserved”

Pkey: 0x8002
SID Range: 0x10-0x1f

Distributed SA

Virtual Fabric “PSM_MPI”
Pkey: 0x8003

SID Range: 0x1-0xf
SID Range: 0x1000117500000000-

0x100011750000000f

Figure 3-4. Distributed SA Multiple Virtual Fabrics Configured Example

Virtual Fabric “Admin”
Pkey: 0x7fff

Infiniband Fabric

Virtual Fabric
“PSM_MPI”

Pkey: 0x8003
SID Range: 0x1-0xf

SID Range:
0x1000117500000000-
0x100011750000000f

Virtual Fabric “Storage”
Pkey: 0x8001

SID:
0x0000494353535250

Virtual Fabric
“Reserved”

Pkey: 0x8002
SID Range: 0x10-0x1f

Distributed SA

Virtual Fabric “Reserved”
Pkey: 0x8002

SID Range: 0x10-0x1f

Virtual Fabric “PSM_MPI”
Pkey: 0x8003

SID Range: 0x1-0xf
SID Range: 0x1000117500000000-

0x100011750000000f

Figure 3-5. Virtual Fabrics with Overlapping Definitions

Virtual Fabric “Default”
Pkey: 0xffff

SID Range: 0x0-0xffffffffffffffff

Infiniband Fabric

Looking for SID Range 0x1-0xf
and 0x1000117500000000-

0x100011750000000f

Distributed SA

Virtual Fabric “Default”
Pkey: 0xffff

SID Range: 0x0-0xffffffffffffffff
Looking for SID Ranges 0x1-0xf and

0x1000117500000000-
0x100011750000000f?Virtual Fabric “PSM_MPI”

Pkey: 0x8002
SID Range: 0x1-0xf

SID Range:
0x1000117500000000-
0x100011750000000f

True Scale Cluster Setup and Administration

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
30 Doc. Number: G91902 Revision: 006US

In Figure 3-5, the fabric administrator enabled the “PSM_MPI” Virtual Fabric without
modifying the “Default” Virtual Fabric. As a result, the Distributed SA sees two different
virtual fabrics that match its configuration file.

In Figure 3-6, the person administering the fabric has created two different Virtual
Fabrics without turning off the Default - and two of the new fabrics have overlapping
SID ranges.

In Figure 3-6, the administrator enabled the “PSM_MPI” fabric, and then added a new
“Reserved” fabric that uses one of the SID ranges that “PSM_MPI” uses. When a path
query has been received, the Distributed SA deals with these conflicts as follows:

First, any virtual fabric with a pkey of 0xffff or 0x7fff is considered to be an Admin or
Default virtual fabric. This Admin or Default virtual fabric is treated as a special case by
the Distributed SA and is used only as a last resort. Stored SIDs are only mapped to
the default virtual fabric if they do not match any other Virtual Fabrics. Thus, in the first
example, Figure 3-6, the Distributed SA will assign all the SIDs in its configuration file
to the “PSM_MPI” Virtual Fabric as shown in Figure 3-7.

Second, the Distributed SA handles overlaps by taking advantage of the fact that
Virtual Fabrics have unique numeric indexes. These indexes are assigned by the FM in
the order which the Virtual Fabrics appear in the configuration file. These indexes can
be seen by using the command iba_saquery -o vfinfo command. The Distributed
SA will always assign a SID to the Virtual Fabric with the lowest index, as shown in
Figure 3-8. This ensures that all copies of the Distributed SA in the fabric will make the
same decisions about assigning SIDs. However, it also means that the behavior of your
fabric can be affected by the order you configured the virtual fabrics.

Figure 3-6. Virtual Fabrics with PSM_MPI Virtual Fabric Enabled

Virtual Fabric “Default”
Pkey: 0xffff

SID Range: 0x0-0xffffffffffffffff

Infiniband Fabric

Virtual Fabric “Default”
Pkey: 0xffff

SID Range: 0x1-0xf
SID Range: 0x1000117500000000-

0x100011750000000f

Distributed SA

Virtual Fabric “Default” Pkey: 0xffff
SID Range: 0x0-0xffffffffffffffff

Looking for SID Ranges 0x1-0xf and
0x1000117500000000-
0x100011750000000f?Virtual Fabric “PSM_MPI”

ID: 1 Pkey: 0x8002
SID Range: 0x1-0xf

SID Range:
0x1000117500000000-
0x100011750000000f

Virtual Fabric “Reserved”
ID: 2

Pkey: 0x8003
SID Range: 0x1-0xf

Figure 3-7. Virtual Fabrics with all SIDs assigned to PSM_MPI Virtual Fabric

Virtual Fabric “Default”
Pkey: 0xffff

SID Range: 0x0-0xffffffffffffffff

Infiniband Fabric

Virtual Fabric “PSM_MPI”
Pkey: 0x8002

SID Range: 0x1-0xf
SID Range: 0x1000117500000000-

0x100011750000000f

Distributed SA

Virtual Fabric “PSM_MPI”
Pkey: 0x8002

SID Range: 0x1-0xf
SID Range:

0x1000117500000000-
0x100011750000000f

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 31

True Scale Cluster Setup and Administration

In Figure 3-8, the Distributed SA assigns all overlapping SIDs to the “PSM_MPI” fabric
because it has the lowest Index

Note: The Distributed SA makes these assignments not because they are right, but because
they allow the fabric to work even though there are configuration ambiguities. The
correct solution in these cases is to redefine the fabric so that no node will ever be a
member of two Virtual Fabrics that service the same SID.

3.8.7 Distributed SA Configuration File

The Distributed SA configuration file is /etc/sysconfig/iba/intel_sa.conf. It
has several settings, but normally administrators will only need to deal with two or
three of them.

3.8.7.1 SID

The SID is the primary configuration setting for the Distributed SA, and it can be
specified multiple times. The SIDs identify applications which will use the distributed SA
to determine their path records. The default configuration for the Distributed SA
includes all the SIDs defined in the default FM configuration for use by MPI.

Each SID= entry defines one Service ID that will be used to identify an application. In
addition, multiple SID= entries can be specified. For example, a virtual fabric has three
sets of SIDs associated with it: 0x0a1 through 0x0a3, 0x1a1 through 0x1a3 and 0x2a1
through 0x2a3. You would define this as:

SID=0x0a1

SID=0x0a2

SID=0x0a3

SID=0x1a1

SID=0x1a2

SID=0x1a3

SID=0x2a1

SID=0x2a2

Figure 3-8. Virtual Fabrics with Unique Numeric Indexes

Virtual Fabric “Default”
Pkey: 0xffff

SID Range: 0x0-0xffffffffffffffff

Infiniband Fabric

Virtual Fabric “Default”
Pkey: 0xffff

SID Range: 0x1-0xf
SID Range: 0x1000117500000000-

0x100011750000000f

Distributed SA

Virtual Fabric “Default” Pkey: 0xffff
SID Range: 0x0-0xffffffffffffffff

Virtual Fabric “PSM_MPI”
ID: 1 Pkey: 0x8002

SID Range: 0x1-0xf
SID Range:

0x1000117500000000-
0x100011750000000f

Virtual Fabric “Reserved”
ID: 2 Pkey: 0x8003
SID Range: 0x1-0xf Virtual Fabric “PSM_MPI”

Pkey: 0x8002
SID Range: 0x1-0xf

SID Range: 0x1000117500000000-
0x100011750000000f

True Scale Cluster Setup and Administration

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
32 Doc. Number: G91902 Revision: 006US

SID=0x2a3

Note: A SID of zero is not supported at this time. Instead, the OPP libraries treat zero values
as "unspecified".

3.8.7.2 ScanFrequency

Periodically, the Distributed SA will completely re synchronize its database. This also
occurs if the FM is restarted. ScanFrequency defines the minimum number of seconds
between complete re synchronizations. It defaults to 600 seconds, or 10 minutes. On
very large fabrics, increasing this value can help reduce the total amount of SM traffic.
For example, to set the interval to 15 minutes, add this line to the bottom of the
intel_sa.conf file:

ScanFrequency=900

3.8.7.3 LogFile

Normally, the Distributed SA logs special events through syslog to
/var/log/messages. This parameter allows you to specify a different destination for
the log messages. For example, to direct Distributed SA messages to their own log, add
this line to the bottom of the intel_sa.conf file:

LogFile=/var/log/SAReplica.log

3.8.7.4 Dbg

This parameter controls how much logging the Distributed SA will do. It can be set to a
number between one and seven, where one indicates no logging and seven includes
informational and debugging messages. To change the Dbg setting for Distributed SA,
find the line in intel_sa.conf that reads Dbg=5 and change it to a different value,
between 1 and 7. The value of Dbg changes the amount of logging that the Distributed
SA generates as follows:

• Dbg=1 or Dbg=2: Alerts and Critical Errors
Only errors that will cause the Distributed SA to terminate will be reported.

• Dbg=3: Errors
Errors will be reported, but nothing else. (Includes Dbg=1 and Dbg=2)

• Dbg=4: Warnings
Errors and warnings will be reported. (Includes Dbg=3)

• Dbg=5: Normal
Some normal events will be reported along with errors and warnings. (Includes
Dbg=4)

• Dbg=6: Informational Messages
In addition to the normal logging, Distributed SA will report detailed
information about its status and operation. Generally, this will produce too
much information for normal use. (Includes Dbg=5)

• Dbg=7: Debugging
This should only be turned on at the request of Intel Support. This will generate
so much information that system operation will be impacted. (Includes Dbg=6)

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 33

True Scale Cluster Setup and Administration

3.8.7.5 Other Settings

The remaining configuration settings for the Distributed SA are generally only useful in
special circumstances and are not needed in normal operation. The sample
intel_sa.conf configuration file contains a brief description of each.

3.9 Changing the MTU Size
The Maximum Transfer Unit (MTU) size enabled by the True Scale HCA and set by the
driver is 4KB. To see the current MTU size, and the maximum supported by the HCA,
type the command:

$ ibv_devinfo

If the switches are set at 2K MTU size, then the HCA will automatically use this as the
active MTU size, there is no need to change any file on the hosts.

To ensure that the driver on this host uses 2K MTU, add the following options line (as a
root user) in to the configuration file:

options ib_qib ibmtu=4

Table 3-1 shows the value of each ibmtu number designation.

The following is a list of the configuration file locations for each OS:
• For SLES use file: /etc/modprobe.conf.local
• For RHEL use file:/etc/modprobe.d/ib_qib.conf

Restart the driver as described in Managing the True Scale Driver.

Note: To use 4K MTU, set the switch to have the same 4K default. If you are using Intel®
12000 Series Switches, refer to the Intel® True Scale Fabric Suite FastFabric User
Guide for externally managed switches, and to the Intel® True Scale Fabric Suite
FastFabric Command Line Interface Reference Guide for the internally managed
switches.

Note: For other switches, see the vendors’ documentation.

3.10 Managing the True Scale Driver
The startup script for ib_qib is installed automatically as part of the software
installation, and normally does not need to be changed. It runs as a system service.

The primary configuration file for the True Scale driver ib_qib and other modules and
associated daemons is /etc/infiniband/openib.conf.

Table 3-1. ibmtu Values

Number Designation Value in Bytes

1 256

2 512

3 1024

4 2048

5 4096

True Scale Cluster Setup and Administration

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
34 Doc. Number: G91902 Revision: 006US

Normally, this configuration file is set up correctly at installation and the drivers are
loaded automatically during system boot once the software has been installed.
However, the ib_qib driver has several configuration variables that set reserved
buffers for the software, define events to create trace records, and set the debug level.

If you are upgrading, your existing configuration files will not be overwritten.

See the ib_qib man page for more details.

3.10.1 Configure the True Scale Driver State

Use the following commands to check or configure the state. These methods will not
reboot the system.

To check the configuration state, use this command. You do not need to be a root user:

$ chkconfig --list openibd

To enable the driver, use the following command (as a root user):

chkconfig openibd on 2345

To disable the driver on the next system boot, use the following command (as a root
user):

chkconfig openibd off

Note: This command does not stop and unload the driver if the driver is already loaded nor
will it start the driver.

3.10.2 Start, Stop, or Restart True Scale Driver

Restart the software if you install a new Intel OFED+ Host Software release, change
driver options, or do manual testing.

Intel recommends using /etc/init.d/openibd to stop, stat and restart the ib_qib
driver. For using the command line to stop, start, and restart (as a root user) the True
Scale driver use the following syntex:

/etc/init.d/openibd [start | stop | restart]

Warning: If the FM, or OpenSM is configured and running on the node, it must be stopped before
using the openibd stop command, and may be started after using the openibd
start command.

This method will not reboot the system. The following set of commands shows how to
use this script.

When you need to determine which True Scale and OpenFabrics modules are running,
use the following command. You do not need to be a root user.

$ lsmod | egrep ’ipath_|ib_|rdma_|findex’

You can check to see if opensmd is configured to autostart by using the following
command (as a root user); if there is no output, opensmd is not configured to
autostart:

/sbin/chkconfig --list opensmd | grep -w on

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 35

True Scale Cluster Setup and Administration

3.10.3 Unload the Driver/Modules Manually

You can also unload the driver/modules manually without using
/etc/init.d/openibd. Use the following series of commands (as a root user):

umount /ipathfs

fuser -k /dev/ipath* /dev/infiniband/*

lsmod | egrep ’^ib_|^rdma_|^iw_’ | xargs modprobe -r

3.10.4 True Scale Driver Filesystem

The True Scale driver supplies a filesystem for exporting certain binary statistics to user
applications. By default, this filesystem is mounted in the /ipathfs directory when
the True Scale script is invoked with the start option (e.g. at system startup). The
filesystem is unmounted when the True Scale script is invoked with the stop option
(for example, at system shutdown).

Here is a sample layout of a system with two cards:

/ipathfs/0/flash

/ipathfs/0/port2counters

/ipathfs/0/port1counters

/ipathfs/0/portcounter_names

/ipathfs/0/counter_names

/ipathfs/0/counters

/ipathfs/driver_stats_names

/ipathfs/driver_stats

/ipathfs/1/flash

/ipathfs/1/port2counters

/ipathfs/1/port1counters

/ipathfs/1/portcounter_names

/ipathfs/1/counter_names

/ipathfs/1/counters

The driver_stats file contains general driver statistics. There is one numbered
subdirectory per True Scale device on the system. Each numbered subdirectory
contains the following per-device files:

• port1counters

• port2counters

• flash

True Scale Cluster Setup and Administration

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
36 Doc. Number: G91902 Revision: 006US

The driver1counters and driver2counters files contain counters for the device,
for example, interrupts received, bytes and packets in and out, etc. The flash file is
an interface for internal diagnostic commands.

The file counter_names provides the names associated with each of the counters in
the binary port#counters files, and the file driver_stats_names provides the
names for the stats in the binary driver_stats files.

3.11 More Information on Configuring and Loading Drivers
See the modprobe(8), modprobe.conf(5), and lsmod(8) man pages for more
information. Also see the file /usr/share/doc/initscripts-*/sysconfig.txt
for more general information on configuration files.

3.12 Performance Settings and Management Tips
The following sections provide suggestions for improving performance and simplifying
cluster management. Many of these settings will be done by the system administrator.

3.12.1 Performance Tuning

Tuning compute or storage (client or server) nodes with True Scale HCAs for MPI and
verbs performance can be accomplished in several ways:

• Run the ipath_perf_tuning script in automatic mode (See “Performance Tuning
using ipath_perf_tuning Tool” on page 44) (easiest method)

• Run the ipath_perf_tuning script in interactive mode (See “Performance Tuning
using ipath_perf_tuning Tool” on page 44 or see man ipath_perf_tuning).
This interactive mode allows more control, and should be used for tuning storage
(client or server) nodes.

• Make changes to ib_qib driver parameter files, the BIOS or system services using
the information provided in the following sections

Note: The modprobe.conf file name will be used in this section for the ib_qib module
configuration file, which has various paths and names in the different Linux
distributions as shown in the following list:

• For SLES or RHEL use file /etc/modprobe.d/ib_qib.conf

3.12.1.1 Systems in General (With Either Intel or AMD CPUs)

For best performance on dual-port HCAs on which only the first port is connected and
active, the module parameter line in the modprobe.conf file should include the
following:

options ib_qib singleport=1

Note: The option singleport=1 assigns all of the hardware contexts to the only active port,
enhancing the performance of that port.

3.12.1.1.1 Services

Turn off the specified daemons using one of the following commands according to which
OS is being used:

• For RHEL or similar systems use:

/sbin/chkconfig --level 12345 cpuspeed off

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 37

True Scale Cluster Setup and Administration

• For SLES systems use:

/sbin/chkconfig --level 12345 powersaved off

If cpuspeed or powersaved are being used as part of implementing Turbo modes to
increase CPU speed, then they can be left on. With these daemons left on,
micro-benchmark performance results may be more variable from run-to-run.

For compute nodes, set the default runlevel to 3 to reduce overheads due to unneeded
processes, such as the X Windows system and GUIs that use the overhead. Reboot the
system for this change to take effect.

3.12.1.1.2 Default Parameter Settings

The qib driver makes certain settings by default based on a check of which CPUs are in
the system. Since these are done by default, no user- or ipath_perf_tuning-generated
changes need to be made in the modprobe configuration file. It doesn't hurt anything if
these settings are in the file, but they are not necessary.

On all systems, the qib driver behaves as if the following parameters were set:

rcvhdrcnt=4096

If you run a script, such as the following:

for x in /sys/module/ib_qib/parameters/*; do echo $(basename $x)
$(cat $x); done

Then in the list of qib parameters, you should see the following parameter being
discussed:

. . .

rcvhdrcnt 0

The 0 means the driver automatically sets these parameters. Therefore, neither the
user nor the ipath_perf_tuning script should modify these parameters.

3.12.1.1.3 Compute-only Node (Not part of a parallel file system cluster)

No tuning is required, other than what is in Section 3.12.1.1, “Systems in General
(With Either Intel or AMD CPUs)” on page 36.

For more details on settings that are specific to either Intel or AMD CPUs, refer to the
following sections for details on systems with those types of CPUs.

3.12.1.1.4 Storage Node (for example, Lustre/GPFS client or server node)

Although termed a “Storage Node” this information includes nodes that are primarily
compute nodes, but also act as clients of a parallel file server.

Increasing the number of kernel receive queues allows more CPU cores to be involved
in the processing of verbs traffic. This is important when using parallel file systems
such as Lustre or IBM's GPFS (General Parallel File System). The module parameter
that sets this number is krcvqs. Each additional kernel receive queue (beyond the one
default queue for each port) takes user contexts away from PSM and from the support
of MPI or compute traffic. The formula which illustrates this trade-off is:

PSM Contexts = 16 - (krcvqs-1)x num_ports

True Scale Cluster Setup and Administration

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
38 Doc. Number: G91902 Revision: 006US

Where num_ports is the number of ports on the HCA
For example, on a single-port card with krcvqs=4 set in modprobe.conf:

PSM Contexts = 16 - (4-1)x 1 = 16 - 3 = 13

If this were a 12-core node, then 13 is more than enough PSM contexts to run an MPI
process on each core without making use of context-sharing. An example, ib_qib
options line in the modprobe.conf file, for this 12-core node case is:

options ib_qib singleport=1 krcvqs=4

Table 3-2 can be used as a guide for setting the krcvqs parameter for the number of
cores in the system supporting PSM processes and the number of ports in the HCA.
Table 3-2 applies most readily to nodes with 1 HCA being used to support PSM (for
example, MPI or SHMEM) processes. For nodes with multiple HCAs that are being used
for PSM, the table decide the maximum number of cores that will be assigned on each
HCA to support PSM (MPI or SHMEM) processes, then apply the table to each HCA in
turn.

In the rare case that the node has more than 64 cores, and it is desired to run MPI on
more than 64 cores, then two HCAs are required and settings can be made, using the
rules in Table 3-2 on page 38, as though half the cores were assigned to each HCA.

3.12.1.1.5 Parallel Filesystem/Lustre Notes

The best performance for Lustre is with the following "modprobe.conf" statements:

options lnet networks="o2ib(ib0)"

options ko2iblnd map_on_demand=32

These parameter settings should be set in /etc/modprobe.d/lustre.conf for
RHEL and SLES.

3.12.1.2 AMD CPU Systems

To improve performance on AMD CPU systems, Intel recommends setting
pcie_caps=0x51 cache_bypass_copy=1 as modprobe configuration parameters.
For example, the module parameter line in the modprobe configuration file should
include the following for AMD Opteron CPUs:

options ib_qib pcie_caps=0x51 cache_bypass_copy=1

Table 3-2. krcvqs Parameter Settings

Cores per Node (to be used
for MPI/PSM on 1 HCA): 1-port, Set krcvqs= 2 active ports in the HCA, Set krcvqs=

61-64 1†

†. 1 is the default setting, so if the table recommends '1', krcvqs does not need to be set.

1†

57-60 2 1†

53-56 3 2,1 (2 for Port 1, 1 for Port 2)

12-52 4 2

8-11 3 2,1 (2 for Port 1, 1 for Port 2)

4-7 2 1†

1-3 1† 1†

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 39

True Scale Cluster Setup and Administration

On AMD systems, the pcie_caps=0x51 setting will typically result in a line of the 'lspci
-vv' output associated with the HCA reading in the "DevCtl" section:

MaxPayload 128 bytes, MaxReadReq 4096 bytes.

On AMD Opteron 6300 Series servers with a PCIe bridge, the pcie_caps=0x51 setting
will have no effect and the MaxReadReq value may still show as 512 bytes in the 'lspci
-vv' output.

3.12.1.3 AMD Interlagos CPU Systems

With AMD Interlagos (Opteron 6200 Series) CPU systems, better performance will be
obtained if, on single-HCA systems, the HCA is put in a PCIe slot closest to Socket
number 1. You can typically find out which slots these are by looking at the schematics
in the manual for your motherboard. (There is currently a BIOS or kernel problem
which implies that no NUMA topology information is available from the kernel.)

To obtain top “Turbo boosts” of up to 1GHz in clock rate, when running on half the cores
of a node, AMD recommends enabling the C6 C-state in the BIOS. Some applications
(but certainly not all) run better when running on one-half of the cores or a Interlagos
node (on every other core, one per Bulldozer module). Intel recommends enabling this
C-state in the BIOS.

3.12.1.4 Intel CPU Systems

3.12.1.4.1 Typical tuning for recent Intel CPUs

For recent Intel CPUs (with core architecture code-named Ivy Bridge or Haswell) no
special tuning is required for C-states or Intel Hyper-Threading technology, and
cpuspeed can be enabled to allow Turbo mode to be in effect.

For older Intel CPUs (code-named Sandy Bridge, Westmere or Nehalem), set the
following BIOS parameters (if available in your BIOS):

• Disable all C-States.
• Disable Intel Hyper-Threading technology

For setting all C-States to 0 where there is no BIOS support:
1. Add kernel boot option using the following command:

processor.max_cstate=0

2. Reboot the system.

If the node uses a single-port HCA, and is not part of a parallel file system cluster, there
is no need for performance tuning changes to a modprobe configuration file. The driver
will automatically set parameters appropriately for the node's Intel CPU, in a
conservative manner.

For Intel® Xeon® systems with Intel® Xeon® 5500 Series (Nehalem) through Intel®
Xeon® E5-2600 v2 (Ivy Bridge) CPUs, the following settings are default:

 pcie_caps=0

On Intel systems with Intel® Xeon® 5500 through E5-2600 v2 Series or newer CPUs,
the lspci output will typically read:

MaxPayload 256 bytes, MaxReadReq 4096 bytes

The default is:

True Scale Cluster Setup and Administration

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
40 Doc. Number: G91902 Revision: 006US

pcie_caps=0

On Intel systems with Intel® Xeon® E5-2600 v3 Series (Haswell) CPUs, the lspci output
will typically read:

MaxPayload 256 bytes, MaxReadReq 512 bytes

If you want to increase bandwidth slightly on Haswell-based systems, and to increase
the MaxReadReq PCIe parameter, you may set pcie_caps=0x51 in the ib_qib modprobe
parameter file. This will result in the lspci output will typically read:

MaxPayload 256 bytes, MaxReadReq 4096 bytes.

This tuning has some risk associated with it. If your system has problems following this
setting, refer to the section “High Risk Tuning for Intel Harpertown CPUs” on page 40
for details on removing this tuning.

If you run a script, such as the following:

for x in /sys/module/ib_qib/parameters/*; do echo $(basename $x)
$(cat $x); done

Then in the list of qib parameters, you should see the following for the two parameters
being discussed:

. . .

rcvhdrcnt 0

. . .

pcie_caps 0

The 0 means the driver automatically sets these parameters. Therefore, neither the
user nor the ipath_perf_tuning script should modify these parameters.

3.12.1.4.2 Intel Nehalem or Westmere CPU Systems (DIMM Configuration)

Compute node memory bandwidth is important for high-performance computing (HPC)
application performance and for storage node performance. On Intel CPUs code named
Nehalem or Westmere (Intel® Xeon® 5500 series or 5600 series) it is important to
have an equal number of dual in-line memory modules (DIMMs) on each of the three
memory channels for each CPU. On the common dual CPU systems, you should use a
multiple of six DIMMs for best performance.

3.12.1.5 High Risk Tuning for Intel Harpertown CPUs

For tuning the Harpertown generation of Intel® Xeon® CPUs that entails a higher risk
factor, but includes a bandwidth benefit, the following can be applied:

For nodes with Intel Harpertown, Intel® Xeon® 54xx CPUs, you can add
pcie_caps=0x51 and pcie_coalesce=1 to the modprobe.conf file. For example:

options ib_qib pcie_caps=0x51 pcie_coalesce=1

If the following problem is reported by syslog, a typical diagnostic can be performed,
which is described in the following paragraphs:

[PCIe Poisoned TLP][Send DMA memory read]

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 41

True Scale Cluster Setup and Administration

Another potential issue is that after starting openibd, messages such as the following
appear on the console:

Message from syslogd@st2019 at Nov 14 16:55:02 ...

kernel:Uhhuh. NMI received for unknown reason 3d on CPU 0

After this happens, you may also see the following message in the syslog:

Mth dd hh:mm:ss st2019 kernel: ib_qib 0000:0a:00.0: infinipath0:

Fatal Hardware Error, no longer usable, SN AIB1013A43727

These problems typically occur on the first run of an MPI program running over the PSM
transport or immediately after the link becomes active. The adapter will be unusable
after this situation until the system is rebooted. To resolve this issue try the following
solutions in order:

• Remove pcie_coalesce=1
• Restart openibd and try the MPI program again
• Remove both pcie_caps=0x51 and pcie_coalesce=1 options from the
ib_qib line in modprobe.conf file and reboot the system

Note: Removing both options will technically avoid the problem but can result in an
unnecessary performance decrease. If the system has already failed with the above
diagnostic it will need to be rebooted. Note that in modprobe.conf file all options for a
particular kernel module must be on the same line and not on repeated options ib_qib
lines.

3.12.1.6 Additional Driver Module Parameter Tunings Available

3.12.1.6.1 Setting driver module parameters on Per-unit or Per-port basis

The ib_qib driver allows the setting of different driver parameter values for the
individual HCAs and ports. This allows the user to specify different values for each port
on a HCA or different values for each HCA in the system. This feature is used when
there is a need to tune one HCA or port for a particular type of traffic, and a different
HCA or port for another type of traffic, for example, compute versus storage traffic.

Not all driver parameters support per-unit or per-port values. The driver parameters
which can be used with the new syntax are listed below:

Per-unit parameters:
• singleport – Use only port 1; more per-port buffer space
• cfgctxts – Set max number of contexts to use
• pcie_caps – Max PCIe tuning: MaxPayload, MaxReadReq

Per-port parameters:
• ibmtu – Set max IB MTU
• krcvqs – number of kernel receive queues
• num_vls – Set number of Virtual Lanes to use

Specifying individual unit/port values is done by using a specific module parameter
syntax:

param name=[default,][unit[:port]=value]

True Scale Cluster Setup and Administration

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
42 Doc. Number: G91902 Revision: 006US

Where:
• param name is the driver module parameter name (listed above)
• default is the default value for that parameter. This value will be used for all

remaining units/port which have not had individual values set. If no individual
unit/port values have been specified, the default value will be used for all
units/ports

• unit is the index of the HCA unit (as seen by the driver). This value is 0-based
(index of first unit is '0').

• port is the port number on that HCA. This value is 1-based (number of first port is
'1').

• value is the parameter value for the particular unit or port.

The fields in the square brackets are options; however, either a default or a
per-unit/per-port value is required.

Example usage:

To set the default IB MTU to 1K for all ports on all units:

ibmtu=3

To set the IB MTU to 256-bytes for unit 0/port 1 and 4096-bytes for unit 0/port 2:

ibmtu=0:1=1,0:2=5

To set the default IB MTU to 2K for all ports but specify 4K for unit 0/port 1:

ibmtu=4,0:1=5

To set singleport to OFF as default and turn it ON for unit 1:

singleport=0,1=1

To set number of configured contexts to 10 on unit 0 and 16 on unit 1:

cfgctxts=0=10,1=16

A user can identify HCAs and correlate them to system unit numbers by using the -b
option (beacon mode option) to the ipath_control script. Issuing the following
command (as root):

ipath_control -u unit -b on

Where:

unit is the system unit number will cause that HCA to start blinking the LEDs on the
face of the board in an alternating pattern.

Once the board has been identified, the user can return the LEDs to normal mode of
operation with the following command (as root):

ipath_control -u unit -b off

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 43

True Scale Cluster Setup and Administration

3.12.1.6.2 numa_aware

The Non-Uniform Memory Access (NUMA) awareness (numa_aware) module parameter
enables driver memory allocations in the same memory domain or NUMA node of the
HCA. This improves the overall system efficiency with CPUs on the same NUMA node
having faster access times and higher bandwidths to memory.

The default is:

option ib_qib numa_aware=10

This command lets the driver automatically decide on the allocation behavior and
disables this feature on platforms with AMD and Intel Westmere-or-earlier CPUs, while
enabling it on newer Intel CPUs.

Tunable options:

option ib_qib numa_aware=0

This command disables the NUMA awareness when allocating memory within the driver.
The memory allocation requests will be satisfied on the node's CPU that executes the
request.

option ib_qib numa_aware=1

This command enables this feature with the driver allocating memory on the NUMA
node closest to the HCA.

3.12.1.6.3 recv_queue_size, Tuning Related to NAKs

The Receiver Not Ready Negative Acknowledgement (RNR NAKs) can slow IPoIB down
significantly. InfiniBand* is fast enough to overrun IPoIB's receive queue before the
post receives can occur.

The counter to look for on the sending side in this file is RC RNR NAKs as shown in the
following example:

cat /sys/class/infiniband/qib0/stats

Port 1:

RC timeouts 0

RC resends 0

RC QACKs 0

RC SEQ NAKs 0

RC RDMA seq 0

RC RNR NAKs 151 <---------

RC OTH NAKs 0

. . .

Ctx:npkts 0:170642806

True Scale Cluster Setup and Administration

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
44 Doc. Number: G91902 Revision: 006US

Check the RC RNR NAKs before and after running the IPoIB test to see if that counter is
increasing. If so, then increasing IPoIB's recv_queue_size to 512 in the
ib_ipoib.conf file should eliminate RNR NAKs.

For example:

cat /etc/modprobe.d/ib_ipoib.conf

alias ib0 ib_ipoib

alias ib1 ib_ipoib

options ib_ipoib recv_queue_size=512

3.12.2 Performance Tuning using ipath_perf_tuning Tool

The ipath_perf_tuning tool is intended to adjust parameters to the True Scale
driver to optimize the InfiniBand* and application performance. The tool is designed to
be run once per installation, however it can be re-run if changes to the configuration
need to be made. Changes are made to the appropriate modprobe file depending on
Linux distribution (see Section 3.12.2.3, “Affected Files” on page 46).

The tool takes into account the type of the node being configured and can be run in one
of two modes - automatic (the default) and interactive. In automatic mode, the tool will
make the parameter adjustments without the need for any user input. Interactive
mode will prompt the user for input on some of the settings and actions.

Table 3-3 list the checks the tool performs on the system on which it is run.

The values picked for the various checks and tests may depend on the type of node
being configured. The tool is aware of two types of nodes<V_Variable>—compute and
storage nodes.

Table 3-3. Checks Performed by ipath_perf_tuning Tool

Check Type Description

pcie_caps Adjust PCIe tuning for max payload and read request size. The result of this
test depends on the CPU type of the node.

singleport
Determine whether to run the HCA in single port mode increasing the internal
HCA resources for that port. This setting depends on the user’s input and is
only performed in interactive mode.

krcvqs
Determine the number of kernel receive context to allocate. Normally, the
driver allocates one context per physical port. However, more kernel receive
contexts can be allocated to improve Verbs performance.

pcie_coalesce Enable PCIe coalescing. PCIe coalescing is only needed or enabled on some
systems with Intel Harpertown CPUs.

cache_bypass_copy Enable the use of cache bypass copies. This option is enabled on AMD
processors.

numa_aware Enable NUMA-aware memory allocations.

cstates Check whether (and which) C-States are enabled. C-States should be turned
off for best performance.

services Check whether certain system services (daemons) are enabled. These
services should be turned off for best performance.

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 45

True Scale Cluster Setup and Administration

3.12.2.0.1 Compute Nodes

Compute nodes are nodes which should be optimized for faster computation and
communication with other compute nodes.

3.12.2.0.2 Storage (Client or Server) Nodes

Storage nodes are nodes which serve as clients or servers in a parallel filesystem
network. Storage nodes (especially clients) are typically performing computation and
using MPI, in addition to sending and receiving storage network traffic. The objective is
to improve IB verbs communications while maintaining good MPI performance.

3.12.2.1 OPTIONS

Table 3-4 list the options for the ipath_perf_tuning tool and describes each option.

3.12.2.2 AUTOMATIC vs. INTERACTIVE MODE

The tool performs different functions when running in automatic mode compared to
running in the interactive mode. The differences include the node type selection, test
execution, and applying the results of the executed tests.

3.12.2.2.1 Node Type Selection

The tool is capable of configuring compute nodes or storage nodes (see Section
3.12.2.0.1, “Compute Nodes” on page 45 and Section 3.12.2.0.2, “Storage (Client or
Server) Nodes” on page 45). When the tool is executed in interactive mode, it will
query the user for the type of node. When the tool is running in automatic mode, it
assumes that the node being configured is a compute node.

3.12.2.2.2 Test Execution

The main difference between the two test modes is that some of the tests are
effectively skipped when the tool is in automatic mode. This is done, due to the fact,
that these test do not provide a guaranteed universal performance gain and therefore,
changing driver parameters associated with them requires user approval. Other tests,
where the tool can make a safe determination, are performed in both modes without
any user interaction. Table 3-5 list the test and describe the mode(s) for each.

Table 3-4. ipath_perf_tuning Tool Options

Option Description

-h Display a short multi-line help message

-T test This option is used to limit the list of tests/check which the tool performs to only those
specified by the option. Multiple tests can be specified as a comma-separated list.

-I Run the tool in interactive mode. In this mode, the tool will prompt the user for input on
certain tests.

Table 3-5. Test Execution Modes

Test Mode

pcie_caps Test is performed in both modes without any user interaction.

singleport Test is only performed in interactive mode. The user is queried
whether to enable singleport mode.

krcvqs Test is performed in both modes without any user interaction.

pci_coalesce Test is performed only in interactive mode. The user is queried
whether to enable PCIe coalescing.

True Scale Cluster Setup and Administration

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
46 Doc. Number: G91902 Revision: 006US

3.12.2.2.3 Applying the Results

Automatic mode versus interactive mode also has an effect when the tool is committing
the changes to the system. Along with the necessary driver parameters, the script also
writes a comment line in the appropriate file which serves as a marker. This marker
contains the version of the script which is making the changes. If the version recorded
matches the version of the script currently being run, the changes are only committed
if the tool is in interactive mode. The assumption is that the script is being re-run by
the user to make adjustments.

3.12.2.3 Affected Files

The following lists the distribution and the file that is modified by the ipath_perf_tuning
tool:

• For SLESor RHEL<V_Variable>— /etc/modprobe.d/ib_qib.conf

3.12.3 Homogeneous Nodes

To minimize management problems, the compute nodes of the cluster should have very
similar hardware configurations and identical software installations. A mismatch
between the True Scale software versions can also cause problems. Old and new
libraries must not be run within the same job. It may also be useful to distinguish
between the True Scale-specific drivers and those that are associated with kernel.org,
OpenFabrics, or are distribution-built. The most useful tools are:

• ident (see “ident” on page 183)
• ipathbug-helper (see “ipath_checkout” on page 184)
• ipath_checkout (see “ipath_checkout” on page 184)
• ipath_control (see “ipath_control” on page 185)
• mpirun (see “mpirun” on page 188)
• rpm (see “rpm” on page 189)
• strings (see “strings” on page 189)

Note: Run these tools to gather information before reporting problems and requesting
support.

3.12.4 Adapter and Other Settings

Note: For the most current information on performance tuning refer to the Intel OFED+ Host
Software Release Notes.

The adapter and other settings can be adjusted for better performance using the
information provided in the following paragraphs.

cache_bypass_copy Test is performed in both modes without any user interaction.

num_aware Test is performed in both modes without any user interaction.

cstates
Test is performed in both modes but the user is only notified of a
potential issue if the tool is in interactive mode. In that case, the
tool displays a warning and a suggestion on how to fix the issue.

services
Test is performed in both modes but the user is notified of
running services only if the tool is in interactive mode. In that
case, the user is queried whether to turn the services off.

Table 3-5. Test Execution Modes (Continued)

Test Mode

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 47

True Scale Cluster Setup and Administration

• Use an IB MTU of 4096 bytes instead of 2048 bytes, if available, with the
QLE7340, and QLE7342. 4K MTU is enabled in the True Scale driver by default.
To change this setting for the driver, see “Changing the MTU Size” on page 33.

• Make sure that write combining is enabled. The x86 Page Attribute Table (PAT)
mechanism that allocates Write Combining (WC) mappings for the PIO buffers has
been added and is now the default. If PAT is unavailable or PAT initialization fails for
some reason, the code will generate a message in the log and fall back to the MTRR
mechanism. See Appendix D Write Combining for more information.

• Check the PCIe bus width. If slots have a smaller electrical width than
mechanical width, lower than expected performance may occur. Use this command
to check PCIe Bus width:

$ ipath_control -iv
This command also shows the link speed.

• Experiment with non-default CPU affinity while running
single-process-per-node latency or bandwidth benchmarks. Latency may be
slightly lower when using different CPUs (cores) from the default. On some
chipsets, bandwidth may be higher when run from a non-default CPU or core. For
the MPI being used, look at its documentation to see how to force a benchmark to
run with a different CPU affinity than the default. With OFED micro benchmarks
such as from the qperf or perftest suites, taskset will work for setting CPU affinity.

3.12.5 Remove Unneeded Services

The cluster administrator can enhance application performance by minimizing the set of
system services running on the compute nodes. Since these are presumed to be
specialized computing appliances, they do not need many of the service daemons
normally running on a general Linux computer.

Following are several groups constituting a minimal necessary set of services. These
are all services controlled by chkconfig. To see the list of services that are enabled,
use the command:

$ /sbin/chkconfig --list | grep -w on

Basic network services are:

• network

• ntpd

• syslog

• xinetd

• sshd

For system housekeeping, use:

• anacron

• atd

• crond

If you are using Network File System (NFS) or yellow pages (yp) passwords:
• rpcidmapd

• ypbind

• portmap

True Scale Cluster Setup and Administration

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
48 Doc. Number: G91902 Revision: 006US

• nfs

• nfslock

• autofs

To watch for disk problems, use:

• smartd

• readahead

The service comprising the True Scale driver and SMA is:

• openibd

Other services may be required by your batch queuing system or user community.

If your system is running the daemon irqbalance, Intel recommends turning it off.
Disabling irqbalance will enable more consistent performance with programs that
use interrupts. Use this command:

/sbin/chkconfig irqbalance off

See Section C.6.2, “Erratic Performance” on page 151 for more information.

3.13 Host Environment Setup for MPI
After the Intel OFED+ Host software and the GNU* (GCC*) compilers have been
installed on all the nodes, the host environment can be set up for running MPI
programs.

3.13.1 Configuring for ssh

Running MPI programs with the command mpirun on a True Scale cluster depends, by
default, on secure shell ssh to launch node programs on the nodes.

To use ssh, you must have generated Rivest, Shamir, Adleman (RSA) or Digital Signal
Algorithm (DSA) keys, public and private. The public keys must be distributed and
stored on all the compute nodes so that connections to the remote machines can be
established without supplying a password.

You or your administrator must set up the ssh keys and associated files on the cluster.
There are two methods for setting up ssh on your cluster. The first method, the
shosts.equiv mechanism, is typically set up by the cluster administrator. The second
method, using ssh-agent, is more easily accomplished by an individual user.

Note: rsh can be used instead of ssh. To use rsh, set the environment variable
MPI_SHELL=rsh. See Section 4.2.14, “Environment Variables” on page 72 for
information on setting environment variables.

Note: rsh has a limit on the number of concurrent connections it can have, typically 255,
which may limit its use on larger clusters.

3.13.1.1 Configuring ssh and sshd Using shosts.equiv

This section describes how the cluster administrator can set up ssh and sshd through
the shosts.equiv mechanism. This method is recommended, provided that your
cluster is behind a firewall and accessible only to trusted users.

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 49

True Scale Cluster Setup and Administration

“Configuring for ssh Using ssh-agent” on page 50 shows how an individual user can
accomplish the same thing using ssh-agent.

The example in this section assumes the following:
• Both the cluster nodes and the front end system are running the openssh package

as distributed in current Linux systems.
• All cluster end users have accounts with the same account name on the front end

and on each node, by using Network Information Service (NIS) or another means
of distributing the password file.

• The front end used in this example is called ip-fe.
• Root or superuser access is required on ip-fe and on each node to configure ssh.
• ssh, including the host’s key, has already been configured on the system ip-fe.

See the sshd and ssh-keygen man pages for more information.

To use shosts.equiv to configure ssg and sshd:
1. On the system ip-fe (the front end node), change the /etc/ssh/ssh_config

file to allow host-based authentication. Specifically, this file must contain the
following four lines, all set to yes. If the lines are already there but commented out
(with an initial #), remove the #.

RhostsAuthentication yes

RhostsRSAAuthentication yes

HostbasedAuthentication yes

EnableSSHKeysign yes

2. On each of the True Scale node systems, create or edit the file
/etc/ssh/shosts.equiv, adding the name of the front end system. Add the
line:

ip-fe
Change the file to mode 600 when you are finished editing.

3. On each of the True Scale node systems, create or edit the file
/etc/ssh/ssh_known_hosts. You will need to copy the contents of the file
/etc/ssh/ssh_host_dsa_key.pub from ip-fe to this file (as a single line),
and then edit that line to insert ip-fe ssh-dss at the beginning of the line. This
is very similar to the standard known_hosts file for ssh. An example line might
look like this (displayed as multiple lines, but a single line in the file):

ip-fe ssh-dss
AAzAB3NzaC1kc3MAAACBAPoyES6+Akk+z3RfCkEHCkmYuYzqL2+1nwo4LeTVWpCD1
QsvrYRmpsfwpzYLXiSJdZSA8hfePWmMfrkvAAk4ueN8L3ZT4QfCTwqvHVvSctpibf
8n
aUmzloovBndOX9TIHyP/Ljfzzep4wL17+5hr1AHXldzrmgeEKp6ect1wxAAAAFQDR
56dAKFA4WgAiRmUJailtLFp8swAAAIBB1yrhF5P0jO+vpSnZrvrHa0Ok+Y9apeJp3
sessee30NlqKbJqWj5DOoRejr2VfTxZROf8LKuOY8tD6I59I0vlcQ812E5iw1GCZf
NefBmWbegWVKFwGlNbqBnZK7kDRLSOKQtuhYbGPcrVlSjuVpsfWEju64FTqKEetA8
l8QEgAAAIBNtPDDwdmXRvDyc0gvAm6lPOIsRLmgmdgKXTGOZUZ0zwxSL7GP1nEyFk
9wAxCrXv3xPKxQaezQKs+KL95FouJvJ4qrSxxHdd1NYNR0DavEBVQgCaspgWvWQ8c
L 0aUQmTbggLrtD9zETVU5PCgRlQL6I3Y5sCCHuO7/UvTH9nneCg==

Change the file to mode 600 when you are finished editing.

True Scale Cluster Setup and Administration

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
50 Doc. Number: G91902 Revision: 006US

4. On each node, the system file /etc/ssh/sshd_config must be edited, so that
the following four lines are uncommented (no # at the start of the line) and set to
yes. (These lines are usually there, but are commented out and set to no by
default.)

RhostsAuthentication yes

RhostsRSAAuthentication yes

HostbasedAuthentication yes

PAMAuthenticationViaKbdInt yes

5. After creating or editing the three files in Steps 2, 3, and 4, sshd must be restarted
on each system. If you are already logged in via ssh (or any other user is logged in
via ssh), their sessions or programs will be terminated, so restart only on idle
nodes. Type the following (as root) to notify sshd to use the new configuration
files:

killall -HUP sshd

Note: This command terminates all ssh sessions into that system. Run from the console, or
have a way to log into the console in case of any problem.

At this point, any end user should be able to login to the ip-fe front end system and
use ssh to login to any True Scale node without being prompted for a password or pass
phrase.

3.13.1.2 Configuring for ssh Using ssh-agent

The ssh-agent, a daemon that caches decrypted private keys, can be used to store
the keys. Use ssh-add to add your private keys to ssh-agent’s cache. When ssh
establishes a new connection, it communicates with ssh-agent to acquire these keys,
rather than prompting you for a passphrase.

The process is described in the following steps:
1. Create a key pair. Use the default file name, and be sure to enter a passphrase.

$ ssh-keygen -t rsa

2. Enter a passphrase for your key pair when prompted. Note that the key agent does
not survive X11 logout or system reboot:

$ ssh-add

3. The following command tells ssh that your key pair should let you in:

$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
Edit the ~/.ssh/config file so that it reads like the following:

Host*

ForwardAgent yes

ForwardX11 yes

CheckHostIP no

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 51

True Scale Cluster Setup and Administration

StrictHostKeyChecking no
This file forwards the key agent requests back to your desktop. When you log into a
front end node, you can use ssh to compute nodes without passwords.

4. Follow your administrator’s cluster policy for setting up ssh-agent on the machine
where you will be running ssh commands. Alternatively, you can start the
ssh-agent by adding the following line to your ~/.bash_profile (or equivalent
in another shell):

eval ‘ssh-agent‘
Use back quotes rather than single quotes. Programs started in your login shell can
then locate the ssh-agent and query it for keys.

5. Finally, test by logging into the front end node, and from the front end node to a
compute node, as follows:

$ ssh frontend_node_name

$ ssh compute_node_name

For more information, see the man pages for ssh(1), ssh-keygen(1),
ssh-add(1), and ssh-agent(1).

3.13.2 Process Limitation with ssh

Process limitation with ssh is primarily an issue when using the mpirun option
-distributed=off. The default setting is now -distributed=on; therefore, in
most cases, ssh process limitations will not be encountered. This limitation for the
-distributed=off case is described in the following paragraph.

MPI jobs that use more than 10 processes per node may encounter an ssh throttling
mechanism that limits the amount of concurrent per-node connections to 10. If you
need to use more processes, you or your system administrator must increase the value
of MaxStartups in your /etc/ssh/sshd_config file.

3.14 Checking Cluster and Software Status

3.14.1 ipath_control

IB status, link speed, and PCIe bus width can be checked by running the program
ipath_control. Sample usage and output are as follows:

$ ipath_control -iv

Intel OFED.VERSION yyyy_mm_dd.hh_mm_ss

0: Version: ChipABI VERSION, InfiniPath_QLE7340, InfiniPath1
VERSION, SW Compat 2

0: Serial: RIB0935M31511 LocalBus: PCIe,5000MHz,x8

0,1: Status: 0xe1 Initted Present IB_link_up IB_configured

0,1: LID=0x23 GUID=0011:7500:005a:6ad0

0,1: HRTBT:Auto LINK:40 Gb/sec (4X QDR)

True Scale Cluster Setup and Administration

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
52 Doc. Number: G91902 Revision: 006US

3.14.2 iba_opp_query

iba_opp_query is used to check the operation of the Distributed SA. You can run it
from any node where the Distributed SA is installed and running, to verify that the
replica on that node is working correctly. See “iba_opp_query” on page 161 for
detailed usage information.

iba_opp_query --slid 0x31 --dlid 0x75 --sid 0x107

Query Parameters:

 resv1 0x0000000000000107

 dgid ::

 sgid ::

 dlid 0x75

 slid 0x31

 hop 0x0

 flow 0x0

 tclass 0x0

 num_path 0x0

 pkey 0x0

 qos_class 0x0

 sl 0x0

 mtu 0x0

 rate 0x0

 pkt_life 0x0

 preference 0x0

 resv2 0x0

 resv3 0x0

Using HCA qib0

Result:

 resv1 0x0000000000000107

 dgid fe80::11:7500:79:e54a

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 53

True Scale Cluster Setup and Administration

 sgid fe80::11:7500:79:e416

 dlid 0x75

 slid 0x31

 hop 0x0

 flow 0x0

 tclass 0x0

 num_path 0x0

 pkey 0xffff

 qos_class 0x0

 sl 0x1

 mtu 0x4

 rate 0x6

 pkt_life 0x10

 preference 0x0

 resv2 0x0

 resv3 0x0

3.14.3 ibstatus

Another useful program is ibstatus that reports on the status of the local HCAs.
Sample usage and output are as follows:

$ ibstatus

Infiniband device 'qib0' port 1 status:

 default gid: fe80:0000:0000:0000:0011:7500:005a:6ad0

 base lid: 0x23

 sm lid: 0x108

 state: 4: ACTIVE

 phys state: 5: LinkUp

 rate: 40 Gb/sec (4X QDR)

 link_layer: IB

True Scale Cluster Setup and Administration

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
54 Doc. Number: G91902 Revision: 006US

3.14.4 ibv_devinfo

ibv_devinfo queries RDMA devices. Use the -v option to see more information.
Sample usage:

$ ibv_devinfo

hca_id: qib0

 fw_ver: 0.0.0

 node_guid: 0011:7500:00ff:89a6

 sys_image_guid: 0011:7500:00ff:89a6

 vendor_id: 0x1175

 vendor_part_id: 29216

 hw_ver: 0x2

 board_id: InfiniPath_QLE7280

 phys_port_cnt: 1

 port: 1

 state: PORT_ACTIVE (4)

 max_mtu: 4096 (5)

 active_mtu: 4096 (5)

 sm_lid: 1

 port_lid: 31

 port_lmc: 0x00

3.14.5 ipath_checkout

ipath_checkout is a bash script that verifies that the installation is correct and that
all the nodes of the network are functioning and mutually connected by the True Scale
fabric. It must be run on a front end node, and requires specification of a nodefile. For
example:

$ ipath_checkout [options] nodefile

The nodefile lists the hostnames of the nodes of the cluster, one hostname per line.
The format of nodefile is as follows:

hostname1

hostname2

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 55

True Scale Cluster Setup and Administration

...

For more information on these programs, see “ipath_control” on page 185,
“ibstatus” on page 181, and “ipath_checkout” on page 184.

§ §

True Scale Cluster Setup and Administration

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
56 Doc. Number: G91902 Revision: 006US

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 57

Running MPI on Intel HCAs

4.0 Running MPI on Intel HCAs

This section provides information on using the Message-Passing Interface (MPI) on
Intel HCAs. Examples are provided for setting up the user environment, and for
compiling and running MPI programs.

4.1 Introduction
The MPI standard is a message-passing library or collection of routines used in
distributed-memory parallel programming. It is used in data exchange and task
synchronization between processes. The goal of MPI is to provide portability and
efficient implementation across different platforms and architectures.

4.1.1 MPIs Packaged with Intel OFED+

The high-performance open-source MPIs packaged with Intel OFED+ include: Open MPI
version 1.8.1, Ohio State University MVAPICH version 1.2, and MVAPICH2 version
1.8.1. These MPIs are offered in versions built with the high-performance Performance
Scaled Messaging (PSM) interface and versions built run over IB Verbs. There are also
the commercial MPIs which are not packaged with Intel OFED+, Intel MPI and Platform
MPI, which both make use of the PSM application programming interface (API) and can
both run over IB Verbs or over user direct access programming library (uDAPL), which
uses IB Verbs. For more information on other MPIs, see Section 5.0, “Using Other MPIs”
on page 77.

4.2 Open MPI
Open MPI is an open source MPI-2 implementation from the Open MPI Project.
Pre-compiled versions of Open MPI version 1.8.1 that run over PSM and are built with
the GCC, PGI, and Intel compilers are available with the Intel download. Open MPI that
runs over Verbs is also available.

Open MPI can be managed with the mpi-selector utility, as described in “Managing
MVAPICH, and MVAPICH2 with the mpi-selector Utility” on page 80.

4.2.1 Installation

Follow the instructions in the Intel® True Scale Fabric Software Installation Guide for
installing Open MPI.

Newer versions of Open MPI released after this Intel OFED+ release will not be
supported (refer to the OFED+ Host Software Release Notes for version numbers).
Intel does not recommend installing any newer versions of Open MPI. If a newer
version is required it can be found on the Open MPI web site
(http://www.open-mpi.org/) and installed after Intel OFED+ has been installed.

http://www.open-mpi.org/

Running MPI on Intel HCAs

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
58 Doc. Number: G91902 Revision: 006US

4.2.2 Setup

When using the mpi-selector tool, the necessary $PATH and $LD_LIBRARY_PATH
setup is done.

When not using the mpi-selector tool, put the Open MPI installation directory in the
PATH by adding the following to PATH:

$mpi_home/bin
Where $mpi_home is the directory path where Open MPI is installed.

4.2.3 Compiling Open MPI Applications

Intel recommends that you use the included wrapper scripts that invoke the underlying
compiler (see Table 4-1).

To compile your program in C, type the following:

$ mpicc mpi_app_name.c -o mpi_app_name

These scripts all provide the command line options listed in Table 4-2.

These wrapper scripts pass most options on to the underlying compiler. Use the
documentation for the underlying compiler (gcc, icc, pgcc, etc.) to determine what
options to use for your application.

Intel strongly encourages using the wrapper compilers instead of attempting to link to
the Open MPI libraries manually. This allows the specific implementation of Open MPI to
change without forcing changes to linker directives in users' Makefiles.

Table 4-1. Open MPI Wrapper Scripts

Wrapper Script Name Language

mpicc C

mpiCC, mpicxx, or mpic++ C++

mpif77 Fortran 77

mpif90 Fortran 90

Table 4-2. Command Line Options for Scripts

Command Meaning

man mpicc
(mpif90, mpicxx,
etc.)

Provides help

-showme Lists each of the compiling and linking commands that would be called without
actually invoking the underlying compiler

-showme:compile Shows the compile-time flags that would be supplied to the compiler

-showme:link Shows the linker flags that would be supplied to the compiler for the link
phase.

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 59

Running MPI on Intel HCAs

4.2.4 Create the mpihosts File

Create an MPI hosts file in the same working directory where Open MPI is installed. The
MPI hosts file contains the host names of the nodes in your cluster that run the
examples, with one host name per line. Name this file mpihosts. The contents can be
in the following format:

More details on the mpihosts file can be found in “mpihosts File Details” on page 68.

4.2.5 Running Open MPI Applications

The Open MPI choices available from mpi-selector --list are:
• openmpi_gcc-1.8.1
• openmpi_gcc_qlc-1.8.1
• openmpi_intel_qlc-1.8.1
• openmpi_pgi_qlc-1.8.1.

The first choice will use verbs by default, and any with the _qlc string will use PSM by
default. If you chose openmpi_gcc_qlc-1.8.1, for example, then the following simple
mpirun command would run using PSM:

$ mpirun -np 4 -machinefile mpihosts mpi_app_name

To run over IB Verbs instead of the default PSM transport in
openmpi_gcc_qlc-1.8.1, use this mpirun command line:

$ mpirun -np 4 -machinefile mpihosts --mca btl sm --mca btl
openib,self --mca mtl ^psm mpi_app_name

The following command enables shared memory:

--mca btl sm

The following command enables openib transport and communication to self:

--mca btl openib, self

The following command disables PSM transport:

--mca mtl ^psm

In these commands, btl stands for byte transport layer and mtl for matching
transport layer.

To use more than 64K ranks use the mpirun option:

-mca mtl_psm_more_ranks 1

The default value is 0. Using 1 changes the number of rank bits from 16 to 20 and
reduces the number of communicator bits to 12. The tag bits are unaffected.

PSM transport works in terms of MPI messages. OpenIB transport works in terms of
byte streams.

Alternatively, you can use Open MPI with a sockets transport running over IPoIB, for
example:

Running MPI on Intel HCAs

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
60 Doc. Number: G91902 Revision: 006US

$ mpirun -np 4 -machinefile mpihosts --mca btl sm --mca btl
tcp,self --mca btl_tcp_if_exclude eth0 --mca btl_tcp_if_include
ib0 --mca mtl ^psm mpi_app_name

Note that eth0 and psm are excluded, while ib0 is included. These instructions may
need to be adjusted for your interface names.

Note that in Open MPI, machinefile is also known as the hostfile.

4.2.6 Further Information on Open MPI

For more information about Open MPI, see:

http://www.open-mpi.org/

http://www.open-mpi.org/faq

4.2.7 Configuring MPI Programs for Open MPI

When configuring an MPI program (generating header files and/or Makefiles) for Open
MPI, you usually need to specify mpicc, mpicxx, and so on as the compiler, rather
than gcc, g++, etc.

Specifying the compiler is typically done with commands similar to the following,
assuming that you are using sh or bash as the shell:

$ export CC=mpicc

$ export CXX=mpicxx

$ export F77=mpif77

$ export F90=mpif90

The shell variables will vary with the program being configured. The following examples
show frequently used variable names. If you use csh, use commands similar to the
following:

$ setenv CC mpicc

You may need to pass arguments to configure directly, for example:

$./configure -cc=mpicc -fc=mpif77 -c++=mpicxx -c++linker=mpicxx

You may also need to edit a Makefile to achieve this result, adding lines similar to:

CC=mpicc

F77=mpif77

F90=mpif90

CXX=mpicxx

In some cases, the configuration process may specify the linker. Intel recommends that
the linker be specified as mpicc, mpif90, etc. in these cases. This specification
automatically includes the correct flags and libraries, rather than trying to configure to
pass the flags and libraries explicitly. For example:

http://www.open-mpi.org/
http://www.open-mpi.org/

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 61

Running MPI on Intel HCAs

LD=mpif90

These scripts pass appropriate options to the various compiler passes to include header
files, required libraries, etc. While the same effect can be achieved by passing the
arguments explicitly as flags, the required arguments may vary from release to
release, so it is good practice to use the provided scripts.

4.2.8 To Use Another Compiler

Open MPI and all other MPIs that run on True Scale, support a number of compilers, in
addition to the default GNU Compiler Collection (GCC, including gcc, g++ and gfortran)
versions 3.3 and later. These include the PGI 8.0, through 11.9; and Intel 9.x, 10.1,
11.x, and 12.x.

The easiest way to use other compilers with any MPI that comes with Intel OFED+ is to
use mpi-selector to change the selected MPI/compiler combination, see “Managing
MVAPICH, and MVAPICH2 with the mpi-selector Utility” on page 80.

These compilers can be invoked on the command line by passing options to the
wrapper scripts. Command line options override environment variables, if set.

Table 4-3 and Table 4-4 show the options for each of the compilers.

In each case, stands for the remaining options to the mpicxx script, the options
to the compiler in question, and the names of the files that it operates.

Also, use mpif77, mpif90, or mpif95 for linking; otherwise, .true. may have the
wrong value.

If you are not using the provided scripts for linking, link a sample program using the
-show option as a test (without the actual build) to see what libraries to add to your
link line. Some examples of the using the PGI compilers follow.

For Fortran 90 programs:

Table 4-3. Intel Compilers

Compiler Command

C $ mpicc -cc=icc

C++ $ mpicc -CC=icpc

Fortran 77 $ mpif77 -fc=ifort

Fortran 90/95
$ mpif90 -f90=ifort
$ mpif95 -f95=ifort

Table 4-4. Portland Group (PGI) Compilers

Compiler Command

C mpicc -cc=pgcc

C++ mpicc -CC=pgCC

Fortran 77 mpif77 -fc=pgf77

Fortran 90/95
mpif90 -f90=pgf90
mpif95 -f95=pgf95

Running MPI on Intel HCAs

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
62 Doc. Number: G91902 Revision: 006US

$ mpif90 -f90=pgf90 -show pi3f90.f90 -o pi3f90

pgf90 -I/usr/include/mpich/pgi5/x86_64 -c -I/usr/include

pi3f90.f90 -c

pgf90 pi3f90.o -o pi3f90 -lmpichf90 -lmpich -lmpichabiglue_pgi5

Fortran 95 programs will be similar to the above.

For C programs:

$ mpicc -cc=pgcc -show cpi.c

pgcc -c cpi.c

pgcc cpi.o -lmpich -lpgftnrtl -lmpichabiglue_pgi5

4.2.8.1 Compiler and Linker Variables

When you use environment variables (e.g., $MPICH_CC) to select the compiler mpicc
(and others) will use, the scripts will also set the matching linker variable (for example,
$MPICH_CLINKER), if it is not already set. When both the environment variable and
command line options are used (-cc=gcc), the command line variable is used.

When both the compiler and linker variables are set, and they do not match for the
compiler you are using, the MPI program may fail to link; or, if it links, it may not
execute correctly.

4.2.9 Process Allocation

Normally MPI jobs are run with each node program (process) being associated with a
dedicated Intel HCA hardware context that is mapped to a CPU.

If the number of node programs is greater than the available number of hardware
contexts, software context sharing increases the number of node programs that can be
run. Each HCA supports four software contexts per hardware context, so up to four
node programs (from the same MPI job) can share that hardware context. There is a
small additional overhead for each shared context.

For the QLE7342 and QLE7340 adapters, the maximum number of contexts available
is:

• 16 user hardware contexts available per HCA
• 64 MPI ranks (processes or node programs) that can be run per HCA when the

Software Context Sharing is Enabled (default mode)

The default hardware context/CPU mappings can be changed on the True Scale HCAs.
See “True Scale Hardware Contexts on the HCAs” on page 63 for more details.

Context sharing is enabled by default. How the system behaves when context sharing
is enabled or disabled is described in “Enabling and Disabling Software Context
Sharing” on page 66.

Achieving optimal performance by ensuring that the PSM process affinity is assigned to
the CPU of the Non-Uniform Memory Access (NUMA) node local to the HCA that it is
operating on as described in “Optimal Assignment of PSM Processes to HCAs” on
page 63.

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 63

Running MPI on Intel HCAs

When running a job in a batch system environment where multiple jobs may be
running simultaneously, it is useful to restrict the number of True Scale contexts that
are made available on each node of an MPI. See “Restricting True Scale Hardware
Contexts in a Batch Environment” on page 66.

Errors that may occur with context sharing are covered in “Context Sharing Error
Messages” on page 67.

There are multiple ways of specifying how processes are allocated. You can use the
mpihosts file, the -np and -ppn options with mpirun, and the MPI_NPROCS and
PSM_SHAREDCONTEXTS_MAX environment variables. How these all are set are covered
later in this document.

4.2.9.1 True Scale Hardware Contexts on the HCAs

On the QLE7340 and QLE7342 HCAs, the receive resources are statically partitioned
across the True Scale contexts according to the number of True Scale contexts enabled.
The following defaults are automatically set according to the number of online CPUs in
the node:

For four or less CPUs: 6 (4 + 2)

For five to eight CPUs: 10 (8 + 2)

For nine or more CPUs: 18 (16 + 2)

The one additional context on HCAs are to support the kernel on each port.

Performance can be improved in some cases by disabling True Scale hardware contexts
when they are not required so that the resources can be partitioned more effectively.

To disable this behavior, explicitly configure for the number you want to use with the
cfgctxts module parameter in the modprobe configuration file (see “Affected Files”
on page 46 for exact file name and location).

The maximum that can be set is 18 on HCAs.

The driver must be restarted if this default is changed. See “Managing the True Scale
Driver” on page 33.

Note: In rare cases, setting contexts automatically on HCAs can lead to sub-optimal
performance where one or more True Scale hardware contexts have been disabled and
a job is run that requires software context sharing. Since the algorithm ensures that
there is at least one True Scale context per online CPU, this case occurs only if the CPUs
are over-subscribed with processes (which is not normally recommended). In this case,
it is best to override the default to use as many True Scale contexts as are available,
which minimizes the amount of software context sharing required.

4.2.9.2 Optimal Assignment of PSM Processes to HCAs

The optimal assignment of PSM processes to HCAs enhancement automatically assigns
processes to NUMA nodes and HCAs to automatically improve MPI/PSM performance to
the greatest extent in systems where the OS and CPUs support NUMA (Non-Uniform
Memory Architecture) and NUMA node to I/O device binding, and where two HCAs
connect to different PCIe root complexes which, in turn, connect to different NUMA
nodes.

Running MPI on Intel HCAs

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
64 Doc. Number: G91902 Revision: 006US

For the best performance, PSM processes running on an NUMA node should use an HCA
that is closest to that NUMA node. PSM processes assigned to an HCA should use a
NUMA node that is closest to that HCA. In a dual rail environment, it may be non-trivial
to determine what the optimal assignments should be, but the PSM code will
automatically assign the optimal NUMA node and HCA for a given PSM process.

4.2.9.2.1 Background and Definitions

Non-Uniform Memory Access (NUMA) causes unequal latency relative to the distance of
the memory from a CPU. This is due to the fact that some regions of memory are on
physically different busses from other regions. NUMA also introduces the concept of
local and remote memory.

A NUMA node is a block of memory with the CPU cores, caches, and so on physically on
the same bus as the memory. With most Intel Xeon CPUs since the Nehalem
generation, a single CPU chip (which might have four, six or eight cores) together with
the memory and bus attached to it, constitute a NUMA node. The same holds true with
systems built with AMD's, original Opteron CPUs. The recent AMD Opteron 6100 Series
(known as the Magny Cours) and 6200 Series (known as Interlagos) CPUs, are really 2
CPU chips on each multi-chip package that plugs into a socket. Each of these CPU chips
has six or eight cores and its own memory bus to connect to its local memory block.
Therefore, a two-socket system with these 6100/6200 Series CPUs consists of four
NUMA nodes. NUMA nodes are connected using high speed system interconnect links
(known as QPI or HT links by Intel and AMD, respectively).

One NUMA node connects to the HCA by a PCIe root-complex and a PCIe bus. To make
a process running on a CPU core perform the best, the objective is to place data that is
needed frequently in the memory local to that core (on the same NUMA node as that
core) and to use an HCA which is closest to that CPU core in terms of system
interconnect hops (QPI or HT links).

MPI ranks are processes which communicate through the PSM (for best performance on
Intel True Scale) library to get access to the HCA. We refer to these MPI ranks as PSM
processes.

4.2.9.2.2 Overview

For each PSM process needing access to the HCA, the PSM library requests that the qib
driver allocate an HCA and a CPU core for it to use for computation and
communications. This enhancement optimizes performance by automatically allocating
the PSM process to a CPU core and to an HCA that are close to each other, and by
allocating the driver's send buffer registers and user contexts to the NUMA node that
includes that CPU core.

By “automatic,” we mean without the need for any configuration by the user. Prior to
this automatic process, the user could select an HCA by the means of a user-level
environment variable (IPATH_UNIT), along with a user-level command utility (taskset),
to bind the PSM process to a given CPU and subsequently its memories on the
respective NUMA node. This configuration was complicated since it required the user to
have detailed knowledge of the system architecture.

Most MPIs set affinity by default, and PSM will honor the MPI's affinity settings. If you
want PSM to assign processes to cores, turn off the MPI's affinity placement (for details
refer to Section 4.2.9.2.3)

Note: When using this optimal assignment of PSM processes to HCAs with mvapich-1.2.0-qlc
MPI, the variable VIADEV_USE_AFFINITY must be set to 0 in order to ensure that
the optimal CPU affinity and HCA are chosen. This can be done by specifying
VIADEV_USE_AFFINITY=0 on the mpirun_rsh command line or in the
ofed.mvapich.params file.

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 65

Running MPI on Intel HCAs

4.2.9.2.3 Configuration

The optimal assignment of PSM processes to HCAs is enabled by default.

In the single rail case this optimization ensures that the PSM processes are running on
the CPU cores of the NUMA node local to the HCA when possible, or on the closest
available NUMA node to the HCA.

In the dual-HCA per node case, this optimization ensures that, whenever possible, the
PSM process affinity is assigned to the CPU of the NUMA node local to the HCA that it is
operating on. Besides the dual-HCA case, this optimization also helps with one HCA or
more than two HCAs.

MPIs offer a wide range of process affinity policies, and there are good reasons for
using them. However, if you believe that placement to optimize communications over
the True Scale HCAs is paramount, the affinity settings of the MPI should be disabled so
that PSM can take over this responsibility. The settings that accomplish this with our
supported MPIs are:

• Intel MPI: set mpirun option: -binding pin=0
• Open MPI: affinity is off by default
• MVAPICH2: set environment variable MV2_ENABLE_AFFINITY=0
• MVAPICH: set environment variable VIADEV_USE_AFFINITY=0
• IBM/Platform MPI: use mpirun option: -aff=none

Although the first optimization in the following list is the default and typically would
serve most users’ needs, three possible optimizations are described for a dual-socket,
dual HCA,16-core Sandy Bridge (Xeon E5-2600 Series CPU) platform:

• IPATH_HCA_SELECTION_ALG=”Round Robin” -- Default for PSM (no need to set
this variable)
— When running up to 16 processes, each process will have a dedicated CPU core.

Processes will be assigned to each HCA alternately. Therefore, if running 16
processes, 8 will be assigned to each HCA.

— When running more than 16 processes, the 17th process onward will share a
CPU, with up to 32 total processes. Context-sharing will not be needed.

This configuration typically has very good performance, gets benefits from the
multiple HCAs with any process count of 2 or greater, requires no special
configuration, and is the default configuration.

• IPATH_HCA_SELECTION_ALG=Packed
— cfgctxts=10 (implies 8 user contexts per HCA)
— When running up to 16 processes, each will have a CPU core dedicated per

process. Eight processes will be assigned to each HCA.
— When running with more than 16 processes, the 17th through 32nd processes

share a CPU allocated by the OS scheduler (and share an HCA context).
This configuration requires cfgctxts=10 to be set in the modprobe configuration file
for ib_qib. This configuration has a possible advantage for applications that perform
better if adjacent MPI ranks are running (mostly) on adjacent CPU cores, to share
cache and ring resources for faster inter-process communications.

• IPATH_HCA_SELECTION_ALG=Packed
— cfgctxts=18 (the default, implies 16 user contexts per HCA)
— Up to 16 processes will have a CPU dedicated per process with contexts from

the first HCA only.

Running MPI on Intel HCAs

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
66 Doc. Number: G91902 Revision: 006US

— When running more than 16 processes, up to 32 processes will have a CPU
dedicated per process. The first 16 processes will be assigned contexts from
the first HCA. The remaining 16 processes will be assigned contexts from the
second HCA but will share a CPU with one of the processes and are handled by
the system scheduler.

4.2.9.2.4 Benefits

Using default settings, the user should observe lower latencies and higher message
rates. The default latency results should reflect what formerly was observed when a
process is pinned to a CPU on the NUMA node local to the HCA. There should be
benefits for 1, 2, or more HCAs on the system, since the contexts are now allocated on
the NUMA node closest (fewest hops through chips) to the HCA.

4.2.9.3 Enabling and Disabling Software Context Sharing

By default, context sharing is enabled; it can also be specifically disabled.

Context Sharing Enabled: The MPI library provides PSM the local process layout so
that True Scale contexts available on each node can be shared if necessary; for
example, when running more node programs than contexts. All PSM jobs assume that
they can make use of all available True Scale contexts to satisfy the job requirement
and try to give a context to each process.

When context sharing is enabled on a system with multiple Intel HCAs and the
IPATH_UNIT environment variable is set, the number of True Scale contexts made
available to MPI jobs is restricted to the number of contexts available on that HCA.
When multiple True Scale devices are present, it restricts the use to a specific HCA. By
default, all configured HCAs are used in round robin order.

Context Sharing Disabled: Each node program tries to obtain exclusive access to an
True Scale hardware context. If no hardware contexts are available, the job aborts.

To explicitly disable context sharing, set this environment variable in one of the two
following ways:

PSM_SHAREDCONTEXTS=0

PSM_SHAREDCONTEXTS=NO

The default value of PSM_SHAREDCONTEXTS is 1 (enabled).

4.2.9.4 Restricting True Scale Hardware Contexts in a Batch Environment

If required for resource sharing between multiple jobs in batch systems, you can
restrict the number of True Scale hardware contexts that are made available on each
node of an MPI job by setting that number in the PSM_SHAREDCONTEXTS_MAX or
PSM_RANKS_PER_CONTEXT environment variables.

For example, if you are running two different jobs on nodes using Intel® HCAs, set
PSM_SHAREDCONTEXTS_MAX to 8 instead of the default 16. Each job would then have
at most 8 of the 16 available hardware contexts. Both of the jobs that want to share a
node would have to set PSM_SHAREDCONTEXTS_MAX=8.

Note: MPIs use different methods for propagating environment variables to the nodes used
for the job; See Section 7.0, “Virtual Fabric support in PSM” on page 109 for examples.
Open MPI will automatically propagate PSM environment variables.

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 67

Running MPI on Intel HCAs

Setting PSM_SHAREDCONTEXTS_MAX=8 as a clusterwide default would unnecessarily
penalize nodes that are dedicated to running single jobs. Intel recommends that a
per-node setting, or some level of coordination with the job scheduler with setting the
environment variable should be used.

The number of contexts can be explicitly configured with the cfgctxts module
parameter. This will override the default settings based on the number of CPUs present
on each node. See “True Scale Hardware Contexts on the HCAs” on page 63.

PSM_RANKS_PER_CONTEXT provides an alternate way of specifying how PSM should
use contexts. The variable is the number of ranks that will share each hardware
context. The supported values are 1, 2, 3 and 4, where 1 is no context sharing, 2 is
2-way context sharing, 3 is 3-way context sharing and 4 is the maximum 4-way
context sharing. The same value of PSM_RANKS_PER_CONTEXT must be used for all
ranks on a node, and typically, you would use the same value for all nodes in that job.
Either PSM_RANKS_PER_CONTEXT or PSM_SHAREDCONTEXTS_MAX would be used in a
particular job, but not both. If both are used and the settings are incompatible, then
PSM will report an error and the job will fail to start up.

4.2.9.5 Context Sharing Error Messages

The error message when the context limit is exceeded is:

No free InfiniPath contexts available on /dev/ipath

This message appears when the application starts.

Error messages related to contexts may also be generated by ipath_checkout or
mpirun. For example:

PSM found 0 available contexts on InfiniPath device

The most likely cause is that the cluster has processes using all the available PSM
contexts. Clean up these processes before restarting the job.

4.2.9.6 Running in Shared Memory Mode

Open MPI supports running exclusively in shared memory mode; no Intel HCA is
required for this mode of operation. This mode is used for running applications on a
single node rather than on a cluster of nodes.

To add pre-built applications (benchmarks), add
/usr/mpi/gcc/openmpi-1.8.1-qlc/tests/osu_benchmarks-3.1.1
to your PATH (or if you installed the MPI in another location: add
$MPI_HOME/tests/osu_benchmarks-3.1.1 to your PATH).

To enable shared memory mode, use a single node in the mpihosts file. For example,
if the file were named onehost and it is in the working directory, the following would
be entered:

$ cat /tmp/onehost

idev-64 slots=8

Enabling the shared memory mode as previously described uses a feature of Open-MPI
host files to list the number of slots, which is the number of possible MPI processes
(aka ranks) that you want to run on the node. Typically this is set equal to the number
of processor cores on the node. A hostfile with 8 lines containing 'idev-64' would
function identically.

Running MPI on Intel HCAs

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
68 Doc. Number: G91902 Revision: 006US

You can use this hostfile and run $ mpirun -np=2 -hostfile onehost
osu_latency to measure MPI latency between two cores on the same host using
shared-memory, or $ mpirun -np=2 -hostfile onehost osu_bw to measure MPI
unidirectional bandwidth using shared memory.

4.2.10 mpihosts File Details

As noted in “Create the mpihosts File” on page 59, a hostfile (also called machines
file, nodefile, or hostsfile) has been created in your current working directory. This file
names the nodes that the node programs may run.

The two supported formats for the hostfile are:

hostname1

hostname2

...

or

hostname1 slots=process_count

hostname2 slots=process_count

...

In the first format, if the -np count (number of processes to spawn in the mpirun
command) is greater than the number of lines in the machine file, the hostnames will
be repeated (in order) as many times as necessary for the requested number of node
programs.

Also in the first format, if the -np count is less than the number of lines in the machine
file, mpirun still processes the entire file and tries to pack processes to use as few
hosts as possible in the hostfile. This is a different behavior than MVAPICH or the
no-longer-supported Intel MPI.

In the second format, process_count can be different for each host, and is normally the
number of available processors on the node. When not specified, the default value is
one. The value of process_count determines how many node programs will be started
on that host before using the next entry in the hostfile file. When the full hostfile
is processed, and there are additional processes requested, processing starts again at
the start of the file.

It is generally recommended to use the second format and various command line
options to schedule the placement of processes to nodes and cores. For example, the
mpirun option -npernode can be used to specify (similar to the Intel MPI option
-ppn) how many processes should be scheduled on each node on each pass through
the hostfile. In the case of nodes with 8 cores each, if the hostfile line is specified as
hostname1 slots=8 max-slots=8, then Open MPI will assign a maximum of 8
processes to the node and there can be no over-subscription of the 8 cores.

There are several alternative ways of specifying the hostfile:
• The command line option -hostfile can be used as shown in the
following command line:

$mpirun -np n -hostfile mpihosts [other options] program-name

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 69

Running MPI on Intel HCAs

or -machinefile is a synonym for -hostfile. In this case, if the named file
cannot be opened, the MPI job fails.
An alternate mechanism to -hostfile for specifying hosts is the -H, -hosts, or
--host followed by a host list. The host list can follow one of the following
examples:

host-01, or

host-01,host-02,host-04,host-06,host-07,host-08

• In the absence of the -hostfile option, the -H option, mpirun uses the
file ./mpihosts, if it exists.
If you are working in the context of a batch queuing system, it may provide a job
submission script that generates an appropriate mpihosts file. More details about
how to schedule processes to nodes with Open MPI refer to the Open MPI website:
http://www.open-mpi.org/faq/?category=running#mpirun-scheduling

4.2.11 Using Open MPI’s mpirun

The script mpirun is a front end program that starts a parallel MPI job on a set of
nodes in an True Scale cluster. mpirun may be run on any x86_64 machine inside or
outside the cluster, as long as it is on a supported Linux distribution, and has TCP
connectivity to all True Scale cluster machines to be used in a job.

The script starts, monitors, and terminates the node programs. mpirun uses ssh
(secure shell) to log in to individual cluster machines and prints any messages that the
node program prints on stdout or stderr, on the terminal where mpirun is invoked.

The general syntax is:

$ mpirun [mpirun_options...] program-name [program options]

program-name is usually the pathname to the executable MPI program. When the MPI
program resides in the current directory and the current directory is not in your search
path, then program-name must begin with ‘./’, for example:

./program-name

Unless you want to run only one instance of the program, use the -np option, for
example:

$ mpirun -np n [other options] program-name

This option spawns n instances of program-name. These instances are called node
programs.

Generally, mpirun tries to distribute the specified number of processes evenly among
the nodes listed in the hostfile. However, if the number of processes exceeds the
number of nodes listed in the hostfile, then some nodes will be assigned more than
one instance of the program.

Another command line option, -npernode, instructs mpirun to assign a fixed number
p of node programs (processes) to each node, as it distributes n instances among the
nodes:

$ mpirun -np n -npernode p -hostfile mpihosts program-name

http://www.open-mpi.org/faq/?category=running#mpirun-scheduling

Running MPI on Intel HCAs

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
70 Doc. Number: G91902 Revision: 006US

This option overrides the slots=process_count specifications, if any, in the lines of
the mpihosts file. As a general rule, mpirun distributes the n node programs among
the nodes without exceeding, on any node, the maximum number of instances
specified by the slots=process_count option. The value of the
slots=process_count option is specified by either the -npernode command line
option or in the mpihosts file.

Typically, the number of node programs should not be larger than
the number of processor cores, at least not for compute-bound
programs.

This option specifies the number of processes to spawn. If this option is not set, then
environment variable MPI_NPROCS is checked. If MPI_NPROCS is not set, the default is
to determine the number of processes based on the number of hosts in the hostfile or
the list of hosts -H or --host.

-npernode processes-per-node

This option creates up to the specified number of processes per node.

Each node program is started as a process on one node. While a node program may
fork child processes, the children themselves must not call MPI functions.

There are many more mpirun options for scheduling where the processes get assigned
to nodes. See man mpirun for details.

mpirun monitors the parallel MPI job, terminating when all the node programs in that
job exit normally, or if any of them terminates abnormally.

Killing the mpirun program kills all the processes in the job. Use CTRL+C to kill
mpirun.

4.2.12 Console I/O in Open MPI Programs

Open MPI directs UNIX standard input to /dev/null on all processes except the
MPI_COMM_WORLD rank 0 process. The MPI_COMM_WORLD rank 0 process inherits
standard input from mpirun.

Note: The node that invoked mpirun need not be the same as the node where the
MPI_COMM_WORLD rank 0 process resides. Open MPI handles the redirection of
mpirun's standard input to the rank 0 process.

Open MPI directs UNIX standard output and error from remote nodes to the node that
invoked mpirun and prints it on the standard output/error of mpirun. Local processes
inherit the standard output/error of mpirun and transfer to it directly.

It is possible to redirect standard I/O for Open MPI applications by using the typical
shell redirection procedure on mpirun.

$ mpirun -np 2 my_app < my_input > my_output

Note that in this example only the MPI_COMM_WORLD rank 0 process will receive the
stream from my_input on stdin. The stdin on all the other nodes will be tied to
/dev/null. However, the stdout from all nodes will be collected into the my_output
file.

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 71

Running MPI on Intel HCAs

4.2.13 Environment for Node Programs

The following information can be found in the Open MPI man page and is repeated here
for easy of use.

4.2.13.1 Remote Execution

Open MPI requires that the PATH environment variable be set to find executables on
remote nodes (this is typically only necessary in rsh- or ssh-based environments --
batch/scheduled environments typically copy the current environment to the execution
of remote jobs, so if the current environment has PATH and/or LD_LIBRARY_PATH set
properly, the remote nodes will also have it set properly). If Open MPI was compiled
with shared library support, it may also be necessary to have the LD_LIBRARY_PATH
environment variable set on remote nodes as well (especially to find the shared
libraries required to run user MPI applications).

It is not always desirable or possible to edit shell startup files to set PATH and/or
LD_LIBRARY_PATH. The --prefix option is provided for some simple configurations
where this is not possible.

The --prefix option takes a single argument: the base directory on the remote node
where Open MPI is installed. Open MPI will use this directory to set the remote PATH
and LD_LIBRARY_PATH before executing any Open MPI or user applications. This allows
running Open MPI jobs without having pre-configured the PATH and LD_LIBRARY_PATH
on the remote nodes.

Open MPI adds the base-name of the current node’s bindir (the directory where Open
MPI’s executables are installed) to the prefix and uses that to set the PATH on the
remote node. Similarly, Open MPI adds the base-name of the current node’s libdir
(the directory where Open MPI’s libraries are installed) to the prefix and uses that to
set the LD_LIBRARY_PATH on the remote node. For example:

Local bindir: /local/node/directory/bin

Local libdir: /local/node/directory/lib64

If the following command line is used:

% mpirun --prefix /remote/node/directory

Open MPI will add /remote/node/directory/bin to the PATH and
/remote/node/directory/lib64 to the D_LIBRARY_PATH on the remote node
before attempting to execute anything.

Note that --prefix can be set on a per-context basis, allowing for different values for
different nodes.

The --prefix option is not sufficient if the installation paths on the remote node are
different than the local node (for example, if /lib is used on the local node but
/lib64 is used on the remote node), or if the installation paths are something other
than a subdirectory under a common prefix.

Note that executing mpirun using an absolute pathname is equivalent to specifying
--prefix without the last subdirectory in the absolute pathname to mpirun. For
example:

% /usr/local/bin/mpirun ...
is equivalent to

Running MPI on Intel HCAs

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
72 Doc. Number: G91902 Revision: 006US

% mpirun --prefix /usr/local

4.2.13.2 Exported Environment Variables

All environment variables that are named in the form OMPI_* will automatically be
exported to new processes on the local and remote nodes. The -x option to mpirun
can be used to export specific environment variables to the new processes. While the
syntax of the -x option allows the definition of new variables. Note that the parser for
this option is currently not very sophisticated, it does not understand quoted values.
Users are advised to set variables in the environment and use -x to export them, not
to define them.

4.2.13.3 Setting MCA Parameters

The -mca switch allows the passing of parameters to various Modular Component
Architecture (MCA) modules. MCA modules have direct impact on MPI programs
because they allow tunable parameters to be set at run time (such as which BTL
communication device driver to use, what parameters to pass to that BTL, and so on.).

The -mca switch takes two arguments: key and value. The key argument generally
specifies which MCA module will receive the value. For example, the key btl is used
to select which BTL to be used for transporting MPI messages. The value argument is
the value that is passed. For example:

mpirun -mca btl tcp,self -np 1 foo

Tells Open MPI to use the tcp and self BTLs, and to run a single copy of foo an
allocated node.

mpirun -mca btl self -np 1 foo

Tells Open MPI to use the self BTL, and to run a single copy of foo an allocated node.

The -mca switch can be used multiple times to specify different key and/or value
arguments. If the same key is specified more than once, the values are concatenated
with a comma (",") separating them.

Note that the -mca switch is simply a shortcut for setting environment variables. The
same effect may be accomplished by setting corresponding environment variables
before running mpirun. The form of the environment variables that Open MPI sets is:

OMPI_MCA_key=value

Thus, the -mca switch overrides any previously set environment variables. The -mca
settings similarly override MCA parameters set in these two files, which are searched
(in order):
1. $HOME/.openmpi/mca-params.conf: The user-supplied set of values takes the

highest precedence.
2. $prefix/etc/openmpi-mca-params.conf: The system-supplied set of values

has a lower precedence.

4.2.14 Environment Variables

Table 4-5 contains a summary of the environment variables that are relevant to any
PSM including Open MPI. Table 4-6 is more relevant for the MPI programmer or script
writer, because these variables are only active after the mpirun command has been

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 73

Running MPI on Intel HCAs

issued and while the MPI processes are active. Open MPI provides the environmental
variables shown in Table 4-6 that will be defined on every MPI process. Open MPI
guarantees that these variables will remain stable throughout future releases.

Table 4-5. Environment Variables Relevant for any PSM

Name Description

PSM_TID

Setting to 0 will turn off TID receive. This is the counterpart of
SDMA for the receive side. Turning it off will reduce
performance, but, again, it can be useful for diagnosing
problems.
Default: 1

PSM_TID_SENDSESSIONS_MAX

Max tid transfer sessions a process can do in parallel, since a
process can do tid transfer with many other processes, this
could be more than the tidflows a process can have. Default
value depends on the memory mode, 256-4096 (min-max) in
normal memory mode; 512-8192 in large memory mode. 1 for
mini memory mode.

PSM_SHAREDCONTEXTS
If set, turn on PSM context sharing. The default is 1 (ON).
Maximum of 4 processes are able to share a context.
Default: 1

PSM_SHAREDCONTEXTS_MAX

Use to set the max-way to share contexts. PSM supports a
maximum of 4-way context sharing.
PSM_RANKS_PER_CONTEXT is usually a simpler way to control
context sharing behavior than this variable. Either variable can
be used to more easily allow multiple jobs to share cores on
one node.
Default: 16

PSM_DEVICES

The order of these items are important for determining which
devices PSM used for connections between pairs of processes.
[For MPSS 3.2 and earlier, setting to self,ipath,shm was needed
when Intel® Xeon Phi™ cards needed to be paired with an HCA
and communicate over the fabric, rather than using on-node
paths. That is no longer necessary with MPSS 3.4 and after with
PSM's symmetric mode support was added for Intel® Xeon
Phi™ and True Scale.]
Default: self,shm,ipath

PSM_MULTIRAIL

Set =1 in a multi-HCA-per-node environment to turn on
striping of large messages across multiple HCAs. Also this can
be used to connect a node to multiple fabrics, aka multi-plane
fabrics.
Default: 0

PSM_MULTIRAIL_MAP

This environment variable tells PSM which unit/port pair is used
to set up a "rail". Multiple specifications are separated by a
comma. If only one rail is specified, it is eqivalent to the
single-rail case: the unit/port specified will be used instead of
the unit/port assigned by the qib driver.
Default: 0:1,1:1

PSM_MQ_RNDV_IPATH_THRESH

This is the # of bytes above which, PSM uses the Rendezvous
protocol, i.e. SDMA and TID receive apply. It is also the point at
which, when PSM_MULTIRAIL is set that larger messages are
striped over two HCAs.
Default: 64000

PSM_MQ_SENDREQS_MAX
Max num of isend requests in-flight.
Default: 1048576

PSM_MQ_RECVREQS_MAX
Max num of irec requests in-flight.
Default: 1048576

Running MPI on Intel HCAs

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
74 Doc. Number: G91902 Revision: 006US

PSM_RANKS_PER_CONTEXT

Sets the number of ranks that will share each hardware
context. The same value of PSM_RANKS_PER_CONTEXT must
be used for all ranks on a node, and typically, all nodes in the
job would use the same setting. PSM_RANKS_PER_CONTEXT
and PSM_SHAREDCONTEXTS_MAX are incompatible. PSM will
report an error and the job will fail to start up if both variables
are set.
Default: 1

PSM_SDMA

Setting to 0 will turn off Send DMA. This uses PIO send only
and will limit peak unidirectional bandwidth to 2-2.5 GB/s, but
can be useful for diagnosing problems.
Default: 1

PSM_IDENTIFY

Will print at MPI_init/PSM init time, which PSM library was used
in (typically) the mpirun command just used. It is also useful to
verify that PSM was used, as opposed to verbs.
Default: 0

IPATH_NO_CPUAFFINITY

When set to 1, the PSM library will skip trying to set processor
affinity. This is also skipped if the processor affinity mask is set
to a list smaller than the number of processors prior to
MPI_Init() being called. Otherwise the initialization code sets
cpu affinity in a way that optimizes cpu and memory locality
and load.
Default: Unset

IPATH_PORT
Specifies the port to use for the job, 1 or 2. Specifying 0 will
autoselect IPATH_PORT.
Default: 0

IPATH_UNIT

Selects which HCA to use. Setting =0 will cause the PSM
process to use the qib0 HCA (aka unit). Setting =1 will cause
the process to use qib1. When multiple True Scale devices are
present and this variable is unset, then this process can be
assigned to either HCA, or use both if PSM_MULTIRAIL is
enabled.
Default: Unset

IPATH_HCA_SELECTION_ALG

This variable provides user-level support to specify HCA/port
selection algorithm through the environment variable. The
default option is a "Round Robin" that allocates MPI processes
to the HCAs in an alternating or round robin fashion. The
alternate value is "Packed" will assign MPI processes to the first
HCA until all contexts for that HCA are used up (max of 16),
then MPI processes will be assigned to the 2nd HCA.
Default: Round Robin

Table 4-6. Environment Variables Relevant for Open MPI

Name Description

OMPI_COMM_WORLD_SIZE This environment variable selects the number of processes in
this process' MPI Comm_World

OMPI_COMM_WORLD_RANK This variable is used to select the MPI rank of this process

OMPI_COMM_WORLD_LOCAL_RANK

This environment variable selects the relative rank of this
process on this node within it job. For example, if four
processes in a job share a node, they will each be given a local
rank ranging from 0 to 3.

OMPI_UNIVERSE_SIZE
This environment variable selects the number of process slots
allocated to this job. Note that this may be different than the
number of processes in the job.

Table 4-5. Environment Variables Relevant for any PSM (Continued)

Name Description

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 75

Running MPI on Intel HCAs

4.2.15 Job Blocking in Case of Temporary Link Failures

By default, as controlled by mpirun’s quiescence parameter -q, an MPI job is killed
for quiescence in the event of an link failure (or unplugged cable). This quiescence
timeout occurs under one of the following conditions:

• A remote rank’s process cannot reply to out-of-band process checks.
• MPI is inactive on the link for more than 15 minutes.

To keep remote process checks but disable triggering quiescence for temporary link
failures, use the -disable-mpi-progress-check option with a nonzero -q option.
To disable quiescence triggering altogether, use -q 0. No matter how these options are
used, link failures (temporary or other) are always logged to syslog.

If the link is down when the job starts and you want the job to continue blocking until
the link comes up, use the -t -1 option.

4.3 Open MPI and Hybrid MPI/OpenMP Applications
Open MPI supports hybrid MPI/OpenMP applications, provided that MPI routines are
called only by the master OpenMP thread. This application is called the funneled thread
model. Instead of MPI_Init/MPI_INIT (for C/C++ and Fortran respectively), the
program can call MPI_Init_thread/MPI_INIT_THREAD to determine the level of
thread support, and the value MPI_THREAD_FUNNELED will be returned.

To use this feature, the application must be compiled with both OpenMP and MPI code
enabled. To do this, use the -openmp or -mp flag (depending on your compiler) on the
mpicc compile line.

As mentioned previously, MPI routines can be called only by the master OpenMP
thread. The hybrid executable is executed as usual using mpirun, but typically only
one MPI process is run per node and the OpenMP library will create additional threads
to utilize all CPUs on that node. If there are sufficient CPUs on a node, you may want to
run multiple MPI processes and multiple OpenMP threads per node.

The number of OpenMP threads is typically controlled by the OMP_NUM_THREADS
environment variable in the .bashrc file. (OMP_NUM_THREADS is used by other
compilers’ OpenMP products, but is not an Open MPI environment variable.) Use this
variable to adjust the split between MPI processes and OpenMP threads. Usually, the
number of MPI processes (per node) times the number of OpenMP threads will be set to
match the number of CPUs per node. An example case would be a node with four CPUs,
running one MPI process and four OpenMP threads. In this case, OMP_NUM_THREADS is
set to four. OMP_NUM_THREADS is on a per-node basis.

See “Environment for Node Programs” on page 71 for information on setting
environment variables.

Note: With Open MPI, and other PSM-enabled MPIs, you will typically want to turn off PSM's
CPU affinity controls so that the OpenMP threads spawned by an MPI process are not
constrained to stay on the CPU core of that process, causing over-subscription of that
CPU. Accomplish this using the IPATH_NO_CPUAFFINITY=1 setting as follows:

OMP_NUM_THREADS=8 (typically set in the ~/.bashrc file)

mprun -np 2 -H host1,host2 -x IPATH_NO_CPUAFFINITY=1 ./hybrid_app

Note: In this case, typically there would be 8 or more CPU cores on the host1 and host2
nodes, and this job would run on a total of 16 threads, 8 on each node. You can use

Running MPI on Intel HCAs

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
76 Doc. Number: G91902 Revision: 006US

'top' and then '1' to monitor that load is distributed to 8 different CPU cores in this
case.

Note: [Both the OMP_NUM_THREADS and IPATH_NO_CPUAFFINITY can be set in .bashrc
or both on the command line after -x options.]

Note: When there are more threads than CPUs, both MPI and OpenMP performance can be
significantly degraded due to over-subscription of the CPUs

4.4 Debugging MPI Programs
Debugging parallel programs is substantially more difficult than debugging serial
programs. Thoroughly debugging the serial parts of your code before parallelizing is
good programming practice.

4.4.1 MPI Errors

Almost all MPI routines (except MPI_Wtime and MPI_Wtick) return an error code;
either as the function return value in C functions or as the last argument in a Fortran
subroutine call. Before the value is returned, the current MPI error handler is called. By
default, this error handler aborts the MPI job. Therefore, you can get information about
MPI exceptions in your code by providing your own handler for MPI_ERRORS_RETURN.
See the man page for the MPI_Errhandler_set for details.

See the standard MPI documentation referenced in Appendix F, “Recommended
Reading” for details on the MPI error codes.

4.4.2 Using Debuggers

• See http://www.open-mpi.org/faq/?category=debugging for details on debugging
with Open MPI.

Note: The TotalView* debugger can be used with the Open MPI supplied in this release.
Consult the TotalView documentation for more information:

http://www.open-mpi.org/faq/?category=running#run-with-tv

§ §

http://www.open-mpi.org/faq/?category=debugging
http://www.open-mpi.org/faq/?category=running#run-with-tv

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 77

Using Other MPIs

5.0 Using Other MPIs

This section provides information on using other MPI implementations. Detailed
information on using Open MPI is provided in Section 4.0, “Running MPI on Intel HCAs”
on page 57, and will be covered in this Section in the context of choosing among
multiple MPIs or in tables which compare the multiple MPIs available.

5.1 Introduction
Support for multiple high-performance MPI implementations has been added. Most
implementations run over both PSM and OpenFabrics Verbs (see Table 5-1). To choose
which MPI to use, use the mpi-selector-menu command, as described in “Managing
MVAPICH, and MVAPICH2 with the mpi-selector Utility” on page 80.

These MPI implementations run on multiple interconnects, and have their own
mechanisms for selecting the interconnect that runs on. Basic information about using
these MPIs is provided in this section. However, for more detailed information, see the
documentation provided with the version of MPI that you want to use.

5.2 Installed Layout
By default, the MVAPICH, MVAPICH2, and Open MPI are installed in the following
directory tree:

Table 5-1. Other Supported MPI Implementations

MPI Implementation Runs Over Compiled
With Comments

Open MPI 1.8.1 PSM
Verbs

GCC, Intel,
PGI

Provides some MPI-2 functionality (one-sided
operations and dynamic processes).
Available as part of the Intel download.
Can be managed by mpi-selector.

MVAPICH
version 1.2

PSM
Verbs

GCC, Intel,
PGI

Provides MPI-1 functionality.
Available as part of the Intel download.
Can be managed by mpi-selector.

MVAPICH2
version 1.8.1

PSM
Verbs

GCC, Intel,
PGI

Provides MPI-2 Functionality.
Can be managed by MPI-Selector.

Platform MPI 8 PSM
Verbs GCC (default)

Provides some MPI-2 functionality (one-sided
operations).
Available for purchase from Platform Computing (an
IBM Company).

Intel MPI
version 4.0

TMI/PSM,
uDAPL GCC (default)

Provides MPI-1 and MPI-2 functionality.
Available for purchase from Intel.

† MVAPICH and Open MPI have been have been compiled for PSM to support the following versions of the
compilers:

(GNU) gcc 4.1.0
(PGI) pgcc 9.0
(Intel) icc 11.1

Using Other MPIs

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
78 Doc. Number: G91902 Revision: 006US

/usr/mpi/$compiler/$mpi-mpi_version

The Intel-supplied MPIs precompiled with the GCC, PGI, and the Intel compilers will
also have -qlc appended after the MPI version number.

For example:

/usr/mpi/gcc/openmpi-VERSION-qlc

If a prefixed installation location is used, /usr is replaced by $prefix.

The following examples assume that the default path for each MPI implementation to
mpirun is:

/usr/mpi/$compiler/$mpi/bin/mpirun

Again, /usr may be replaced by $prefix. This path is sometimes referred to as
$mpi_home/bin/mpirun in the following sections.

See the documentation for Intel MPI, and Platform MPI for their default installation
directories.

5.3 Open MPI
Open MPI is an open source MPI-2 implementation from the Open MPI Project.
Pre-compiled versions of Open MPI version 1.8.1 that run over PSM and are built with
the GCC, PGI, and Intel compilers are available with the Intel download.

Details on Open MPI operation are provided in Section 4.0, “Running MPI on Intel
HCAs” on page 57.

5.4 MVAPICH
Pre-compiled versions of MVAPICH 1.2 built with the GNU, PGI, and Intel compilers,
and that run over PSM, are available with the Intel download.

MVAPICH that runs over Verbs and is pre-compiled with the GNU compiler is also
available.

MVAPICH can be managed with the mpi-selector utility, as described in “Managing
MVAPICH, and MVAPICH2 with the mpi-selector Utility” on page 80.

5.4.1 Compiling MVAPICH Applications

As with Open MPI, Intel recommends that you use the included wrapper scripts that
invoke the underlying compiler (see Table 5-2).

To compile your program in C, type:

Table 5-2. MVAPICH Wrapper Scripts

Wrapper Script Name Language

mpicc C

mpiCC, mpicxx C++

mpif77 Fortran 77

mpif90 Fortran 90

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 79

Using Other MPIs

$ mpicc mpi_app_name.c -o mpi_app_name

To check the default configuration for the installation, check the following file:

/usr/mpi/$compiler/$mpi/etc/mvapich.conf

5.4.2 Running MVAPICH Applications

By default, the MVAPICH shipped with the Intel OFED+ and IFS (IFS), runs over PSM
once it is installed.

Here is an example of a simple mpirun command running with four processes:

$ mpirun -np 4 -hostfile mpihosts mpi_app_name

Password-less ssh is used unless the -rsh option is added to the command line above.

5.4.3 Further Information on MVAPICH

For more information about MVAPICH, see:
http://mvapich.cse.ohio-state.edu/

5.5 MVAPICH2
Pre-compiled versions of MVAPICH2 1.8.1 built with the GNU, PGI, and Intel compilers,
and that run over PSM, are available with the Intel download.

MVAPICH2 that runs over Verbs and is pre-compiled with the GNU compiler is also
available.

MVAPICH2 can be managed with the mpi-selector utility, as described in “Managing
MVAPICH, and MVAPICH2 with the mpi-selector Utility” on page 80.

5.5.1 Compiling MVAPICH2 Applications

As with Open MPI, Intel recommends that you use the included wrapper scripts that
invoke the underlying compiler (see Table 5-3).

To compile your program in C, type:

$ mpicc mpi_app_name.c -o mpi_app_name

To check the default configuration for the installation, check the following file:

/usr/mpi/$compiler/$mpi/etc/mvapich.conf

Table 5-3. MVAPICH Wrapper Scripts

Wrapper Script Name Language

mpicc C

mpiCC, mpicxx C++

mpif77 Fortran 77

mpif90 Fortran 90

http://mvapich.cse.ohio-state.edu/

Using Other MPIs

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
80 Doc. Number: G91902 Revision: 006US

5.5.2 Running MVAPICH2 Applications

By default, the MVAPICH2 options in mpi-selector with 'qlc' as part of their name run
over PSM once it is installed.

Here is an example of a simple mpirun command running with four processes:

$ mpirun_rsh -np 4 -hostfile mpihosts ./mpi_app_name

5.5.3 Further Information on MVAPICH2

For more information about MVAPICH2, see:
http://mvapich.cse.ohio-state.edu/support/mvapich-1.8.1-quick-start.html

or for more detail:
http://mvapich.cse.ohio-state.edu/support/mvapich-1.8.1rc2_user_guide.pdf

5.6 Managing MVAPICH, and MVAPICH2
with the mpi-selector Utility
When multiple MPI implementations have been installed on the cluster, you can use the
mpi-selector to switch between them. The MPIs that can be managed with the
mpi-selector are:

• MVAPICH
• MVAPICH2

The mpi-selector is an OFED utility that is installed as a part of OFED+ Host
Software. Its basic functions include:

• Listing available MPI implementations
• Setting a default MPI to use (per user or site wide)
• Unsetting a default MPI to use (per user or site wide)
• Querying the current default MPI in use

Following is an example for listing and selecting an MPI:

$ mpi-selector --list

mpi-1.2.3

mpi-3.4.5

$ mpi-selector --set mpi-3.4.5

The new default takes effect in the next shell that is started. See the mpi-selector
man page for more information.

The example shell scripts mpivars.sh and mpivars.csh, for registering with
mpi-selector, are provided as part of the mpi-devel RPM in
$prefix/share/mpich/mpi-selector-{intel, gnu, pgi} directories.

For all non-GNU compilers that are installed outside standard Linux search paths, set
up the paths so that compiler binaries and runtime libraries can be resolved. For
example, set LD_LIBRARY_PATH, both in your local environment and in an rc file (such
as .mpirunrc, .bashrc, or .cshrc), are invoked on remote nodes. See

http://mvapich.cse.ohio-state.edu/support/mvapich2-1.7-quick-start.html
http://mvapich.cse.ohio-state.edu/support/mvapich2-1.7rc2_user_guide.pdf

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 81

Using Other MPIs

“Environment for Node Programs” on page 70 and “Compiler and Linker Variables” on
page 62 for information on setting up the environment for information on setting the
run-time library path.

Note: The Intel-compiled versions require that the Intel compiler be installed and that paths
to the Intel compiler runtime libraries be resolvable from the user’s environment. The
version used is Intel 10.1.012.

5.7 Platform MPI 8
Platform MPI 8 (formerly HP–MPI) is a high performance, production–quality
implementation of the Message Passing Interface (MPI), with full MPI-2 funcionality.
Platform MPI 8 is distributed by over 30 commercial software vendors, so you may
need to use it if you use certain HPC applications, even if you don't purchase the MPI
separately.

5.7.1 Installation

Follow the instructions for downloading and installing Platform MPI 8 from the Platform
Computing web site.

5.7.2 Setup

Edit two lines in the hpmpi.conf file as follows:

Change,

MPI_ICMOD_PSM__PSM_MAIN = "^ib_ipath"
to,

MPI_ICMOD_PSM__PSM_MAIN = "^"

Change,

MPI_ICMOD_PSM__PSM_PATH = "^ib_ipath"
to,

MPI_ICMOD_PSM__PSM_PATH = "^"

5.7.3 Compiling Platform MPI 8 Applications

As with Open MPI, Intel recommends that you use the included wrapper scripts that
invoke the underlying compiler (see Table 5-4).

To compile your program in C using the default compiler, type:

Table 5-4. Platform MPI 8 Wrapper Scripts

Wrapper Script Name Language

mpicc C

mpiCC C

mpi77 Fortran 77

mpif90 Fortran 90

Using Other MPIs

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
82 Doc. Number: G91902 Revision: 006US

$ mpicc mpi_app_name.c -o mpi_app_name

5.7.4 Running Platform MPI 8 Applications

Here is an example of a simple mpirun command running with four processes, over
PSM:

$ mpirun -np 4 -hostfile mpihosts -PSM mpi_app_name

To run over IB Verbs, type:

$ mpirun -np 4 -hostfile mpihosts -IBV mpi_app_name

To run over TCP (which could be IPoIB if the hostfile is setup for IPoIB interfaces), type:

$ mpirun -np 4 -hostfile mpihosts -TCP mpi_app_name

5.7.5 More Information on Platform MPI 8

For more information on Platform MPI 8, see the Platform Computing web site

5.8 Intel MPI
Intel MPI version 4.0 is supported with this release.

5.8.1 Installation

Follow the instructions for download and installation of Intel MPI from the Intel web
site.

5.8.2 Setup

Intel MPI can be run over Tag Matching Interface (TMI)

The setup for Intel MPI is described in the following steps:
1. Make sure that the TMI psm provider is installed on every node and all nodes have

the same version installed. The TMI is supplied with the Intel MPI distribution. It
can be installed either with the Intel OFED+ Host Software installation or using the
rpm files. For example:

$ rpm -qa | grep tmi

tmi-1.0-1

2. Verify that there is a /etc/tmi.conf file. It should be installed when installing the
TMI. The file tmi.conf contains a list of TMI psm providers. In particular it must
contain an entry for the PSM provider in a form similar to:

psm X.X libtmip_psm.so " " # Comments OK

Intel MPI can also be run over uDAPL, which uses IB Verbs. uDAPL is the user mode
version of the Direct Access Provider Library (DAPL), and is provided as a part of the
OFED packages. You will also have to have IPoIB configured.

The setup for Intel MPI is described in the following steps:

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 83

Using Other MPIs

1. Make sure that DAPL 1.2 or 2.0 is installed on every node and all nodes have the
same version installed. In this release they are called compat-dapl. Both versions
are supplied with the OpenFabrics RPMs and are included in the Intel OFED+ Host
Software package. They can be installed either with the Intel OFED+ Host Software
installation or using the rpm files after the Intel OFED+ Host Software tar file
has been unpacked. For example:
Using DAPL 1.2.

$ rpm -qa | grep compat-dapl

compat-dapl-1.2.12-1.x86_64.rpm
compat-dapl-debuginfo-1.2.12-1.x86_64.rpm
compat-dapl-devel-1.2.12-1.x86_64.rpm
compat-dapl-devel-static-1.2.12-1.x86_64.rpm
compat-dapl-utils-1.2.12-1.x86_64.rpm

Using DAPL 2.0.

$ rpm -qa | grep dapl

dapl-devel-static-2.0.19-1

compat-dapl-1.2.14-1

dapl-2.0.19-1

dapl-debuginfo-2.0.19-1

compat-dapl-devel-static-1.2.14-1

dapl-utils-2.0.19-1

compat-dapl-devel-1.2.14-1

dapl-devel-2.0.19-1

2. Verify that there is a /etc/dat.conf file. It should be installed by the dapl-
RPM. The file dat.conf contains a list of interface adapters supported by uDAPL
service providers. In particular, it must contain mapping entries for OpenIB-cma for
dapl 1.2.x and ofa-v2-ib for dapl 2.0.x, in a form similar to this (each on
one line):

OpenIB-cma u1.2 nonthreadsafe default libdaplcma.so.1 dapl.1.2
"ib0 0" ""

and

ofa-v2-ib0 u2.0 nonthreadsafe default libdaplofa.so.2 dapl.2.0
"ib0 0" ""

3. On every node, type the following command (as a root user):

modprobe rdma_ucm
To ensure that the module is loaded when the driver is loaded, add
RDMA_UCM_LOAD=yes to the /etc/infiniband/openib.conf file. (Note that
rdma_cm is also used, but it is loaded automatically.)

4. Bring up an IPoIB interface on every node, for example, ib0. See “Configure
IPoIB” on page 20 for more details on configuring IPoIB.

Using Other MPIs

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
84 Doc. Number: G91902 Revision: 006US

Intel MPI has different bin directories for 32-bit (bin) and 64-bit (bin64); 64-bit is the
most commonly used.

To launch MPI jobs, the Intel installation directory must be included in PATH and
LD_LIBRARY_PATH.

When using sh for launching MPI jobs, run the following command:

$ source <$prefix>/bin64/mpivars.sh

When using csh for launching MPI jobs, run the following command:

$ source <$prefix>/bin64/mpivars.csh

Substitute bin if using 32-bit.

5.8.3 Compiling Intel MPI Applications

As with Open MPI, Intel recommended that you use the included wrapper scripts that
invoke the underlying compiler. The default underlying compiler is GCC, including
gfortran. Note that there are more compiler drivers (wrapper scripts) with Intel MPI
than are listed here (see Table 5-5); check the Intel documentation for more
information.

To compile your program in C using the default compiler, type:

$ mpicc mpi_app_name.c -o mpi_app_name

To use the Intel compiler wrappers (mpiicc, mpiicpc, mpiifort), the Intel
compilers must be installed and resolvable from the user’s environment.

5.8.4 Running Intel MPI Applications

Here is an example of a simple mpirun command running with four processes:

$ mpirun -np 4 -f mpihosts mpi_app_name

For more information, follow the Intel MPI instructions for usage of mpirun,
mpdboot, and mpiexec (mpirun is a wrapper script that invoked both mpdboot and
mpiexec). Remember to use -r ssh with mpdboot if you use ssh.

Pass the following option to mpirun to select TMI:

Table 5-5. Intel MPI Wrapper Scripts

Wrapper Script Name Language

mpicc C

mpiCC C++

mpif77 Fortran 77

mpif90 Fortran 90

mpiicc C (uses Intel C compiler)

mpiicpc C++ (uses Intel C++ compiler)

mpiifort Fortran 77/90 (uses Intel Fortran compiler)

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 85

Using Other MPIs

-genv I_MPI_FABRICS tmi

Pass the following option to mpirun to select uDAPL:

uDAPL 1.2:

-genv I_MPI_DEVICE rdma:OpenIB-cma

uDAPL 2.0:

-genv I_MPI_DEVICE rdma:ofa-v2-ib

To help with debugging, you can add this option to the Intel mpirun command:

TMI:

-genv TMI_DEBUG 1

uDAPL:

-genv I_MPI_DEBUG 2

5.8.5 Further Information on Intel MPI

For more information on using Intel MPI, see: http://www.intel.com/

5.9 Improving Performance of Other MPIs Over IB Verbs
Performance of MPI applications when using an MPI implementation over IB Verbs can
be improved by tuning the IB MTU size.

Note: No manual tuning is necessary for PSM-based MPIs, since the PSM layer determines the
largest possible IB MTU for each source/destination path.

The maximum supported MTU size of HCAs is 4K.

Support for 4K IB MTU requires switch support for 4K MTU. The method to set the IB
MTU size varies by MPI implementation:

• Open MPI defaults to the lower of either the IB MTU size or switch MTU size.
• MVAPICH defaults to an IB MTU size of 1024 bytes. This can be over-ridden by

setting an environment variable:

$ export VIADEV_DEFAULT_MTU=MTU2048
Valid values are MTU256, MTU512, MTU1024, MTU2048 and MTU4096. This
environment variable must be set for all processes in the MPI job. To do so, use
~/.bashrc or use of /usr/bin/env.

• MVAPICH2 defaults to an IB MTU size of 2048 bytes, which should be sufficient for
most applications.

• Platform MPI over IB Verbs automatically determines the IB MTU size.
• Intel MPI over uDAPL (which uses IB Verbs) automatically determines the IB MTU

size.

§ §

http://www.intel.com/

Using Other MPIs

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
86 Doc. Number: G91902 Revision: 006US

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 87

SHMEM Description and Configuration

6.0 SHMEM Description and Configuration

6.1 Overview
Intel SHMEM is a user-level communications library for one-sided operations. It
implements the SHMEM Application Programming Interface (API) and runs on the
Intel® True Scale Fabric Stack. The SHMEM API provides global distributed shared
memory across a network of hosts. Details of the API implementation are included in
an appendix.

SHMEM is quite distinct from local shared memory (often abbreviated as "shm" or even
“shmem”). Local shared memory is the sharing of memory by processes on the same
host running the same OS system image. SHMEM provides access to global shared
memory distributed across a cluster. The SHMEM API is completely different from and
unrelated to the standard System V Shared Memory API provided by UNIX operating
systems.

6.2 Interoperability
Intel SHMEM depends on the Performance Scaled Messaging (PSM) protocol layer,
implemented as a user-space library. Intel SHMEM is only available to run with Intel
HCAs.

6.3 Installation

Note: Refer to the Intel® True Scale Fabric OFED+ Host Software Release Notes for the latest
supported OS, MPI, and MVAPICH releases.

SHMEM is packaged with the Intel IFS or Intel OFED+ Host software.Every node in the
cluster must have a Intel HCA and be running RedHat Enterprise Linux* (RHEL) OS.
One or more Message Passing Interface (MPI) implementations are required and
Performance Scaled Messaging (PSM) support must be enabled within the MPI. The
following MPI Implementations are supported:

• Open MPI <VERSION> configured to include PSM support. This is provided by Intel
IFS and can be found in the following directories:

/usr/mpi/gcc/openmpi-<VERSION>-qlc

/usr/mpi/intel/openmpi-<VERSION>-qlc

/usr/mpi/pgi/openmpi-<VERSION>-qlc
The -qlc suffix denotes that this is the Intel PSM version.

• MVAPICH <VERSION> compiled for PSM. This is provided by Intel IFS and can be
found in the following directories:

/usr/mpi/gcc/mvapich-<VERSION>-qlc

SHMEM Description and Configuration

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
88 Doc. Number: G91902 Revision: 006US

/usr/mpi/intel/mvapich-<VERSION>-qlc

/usr/mpi/pgi/mvapich-<VERSION>-qlc
The -qlc suffix denotes that this is the Intel PSM version.

• MVAPICH2 <VERSION> compiled for PSM. This is provided by Intel IFS and can be
found in the following directory:

/usr/mpi/gcc/mvapich2-<VERSION>-qlc

/usr/mpi/intel/mvapich2-<VERSION>-qlc

/usr/mpi/pgi/mvapich2-<VERSION>-qlc
The -qlc suffix denotes that this is the Intel PSM version.

It is recommended that you match the compiler used to build the MPI implementation
with the compiler that you are using to build your SHMEM application. For example, if
you are using the Intel compilers to build your SHMEM application and wish to run with
Open MPI then use the Intel build of the Open MPI library:

/usr/mpi/intel/openmpi-<VERSION>-qlc

The following C compilers are supported:
• gcc (as provided by distro) in 64-bit mode
• Intel <VERSION> C compiler in 64-bit mode
• PGI <VERSION> C compiler in 64-bit mode

For more information or to perform and installation with SHMEM enabled refer to
Section 4 of the Intel® True Scale Fabric Software Installation Guide.

By default Intel SHMEM is installed with a prefix of /usr/shmem/intel into the following
directory structure:

/usr/shmem/intel

/usr/shmem/intel/bin

/usr/shmem/intel/bin/mvapich

/usr/shmem/intel/bin/mvapich2

/usr/shmem/intel/bin/openmpi

/usr/shmem/intel/lib64

/usr/shmem/intel/lib64/mvapich

/usr/shmem/intel/lib64/mvapich2

/usr/shmem/intel/lib64/openmpi

/usr/shmem/intel/include

Intel recommends that /usr/shmem/intel/bin is added onto your $PATH.

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 89

SHMEM Description and Configuration

If it is not on your $PATH, then you will need to give full pathname scd to find the
shmemrun and shmemcc wrapper scripts.

Note: There are subdirectories inside of bin for each MPI that are supported. These contain
SHMEM benchmark programs that are linked directly against the MPI libraries as well as
the SHMEM libraries.

6.4 SHMEM Programs

6.4.1 Basic SHMEM Program

Following is an example of a basic SHMEM program:

% cat shmem_world.c

#include <shmem.h>

#include <stdio.h>

int main ()

{

shmem_init();

printf("Hello from PE %d out of %d\n", my_pe(), num_pes());

return 0;

 }

Note: These instructions assume a standard SHMEM installation and that
/usr/shmem/Intel/bin has been added to the $PATH.

The % character in the previous example is used to indicate the shell prompt and is
followed by a command. The program can be compiled and linked using the shmemcc
wrapper script:

% shmemcc shmem_world.c -o shmem_world

The program can be run using the shmemrun wrapper script:

% shmemrun -m hosts -np 2 ./shmem_world

 Hello from PE 1 out of 2

 Hello from PE 0 out of 2

This script assumes a hosts file is available, containing the host names on which the
program is run. The -np option is used to specify the number of processing elements
(PEs) to be run (for example, 2).

SHMEM Description and Configuration

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
90 Doc. Number: G91902 Revision: 006US

6.4.2 Compiling SHMEM Programs

The shmemcc script is a wrapper script for the compilation of the SHMEM C programs.
The main purpose of the script is to call the C compiler with additional options to
specify the SHMEM include directory, the SHMEM library directory, and to appropriately
link in the SHMEM library. The shmemcc script automatically determines the correct
directories by finding them relative to its own location. The standard directory layout of
the Intel SHMEM software is assumed.

The default C compiler is gcc, and can be overridden by specifying a compiler with the
$SHMEM_CC environment variable.

If the option -show is added to the shmemcc command, it displays the command line
that would be used to invoke the C compiler, but the C compiler will not be invoked. All
other arguments to shmemcc are passed through to the C compiler without
modification.

The C compiler can be used directly without using shmemcc. In that case the user must
add the following to the command line:

For compilations add the following option:

-I $SHMEM_DIR/include

For linkages add the following options:

-Wl,--export-dynamic,--allow-shlib-undefined

-L $SHMEM_DIR/lib64/default

-lintel_shmem
Where $SHMEM_DIR in both of the options denotes the top-level directory of the
SHMEM installation, typically the directory is /usr/shmem/intel.
The -L option uses the default version of the SHMEM libraries. The default is
actually a symbolic link to libraries built for a specific MPI implementation.
However, this choice does not constrain the SHMEM binary, and it can be run over
any of the supported MPIs.

Note: If the SHMEM RPM is installed with --prefix=usr then the -I option is not necessary
since the header files are in system default locations. All of the linkage options are still
required.

The rationale for the -Wl, --export-dynamic, --allow-shlib-undefined
options are to prevent other library and symbol dependencies in the SHMEM library
from percolating up into the application binaries. These symbols include those from the
underlying MPI implementation. There is no need to couple the application binary to a
particular MPI, and these symbols will be correctly resolved at run-time. The advantage
of this approach is that SHMEM application binaries will be portable across different
implementations of the Intel SHMEM library, including portability over different
underlying MPIs.

6.4.3 Running SHMEM Programs

6.4.3.1 Using shmemrun

The shmemrun script is a wrapper script for running SHMEM programs using mpirun.
The main purpose of the script is to call mpirun with additional options to specify the
SHMEM library directory so that its dynamic libraries can be resolved. The script detects
which mpirun is being used and remaps some common mpirun options to present a

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 91

SHMEM Description and Configuration

convenient and consistent interface to SHMEM users. Additionally, it enables PSM
support in the underlying mpirun if required, and auto-propagates PSM, IPATH and
SHMEM environment variables to the MPI processes. The shmemrun script
automatically determines the correct directories by finding them relative to its own
location. The shmemrun script can only automatically determine the correct directories
if the standard directory layout of the Intel SHMEM software has not been changed.

By default mpirun is picked up from the path and is assumed to be called mpirun.
Alternatively, the pathname of mpirun can be specified with the $SHMEM_MPIRUN
environment variable. There is also support for integration with slurm (see “Slurm
Integration” on page 92). The following mpirun commands are supported:

• Open MPI: mpirun
• MVAPICH: mpirun and mpirun_rsh
• MVAPICH2: mpirun and mpirun_rsh

If the shmemrun script is run with -show option, it shows that the command line was
used to invoke mpirun, but will not invoke it. Options that specify the number of
processes and the hosts file are mapped by shmemrun to options that are accepted by
the underlying mpirun. The contents of the host file can be parsed and regenerated if
necessary and options to propagate environment variables are provided. The rationale
for this script is to allow you to use the familiar options from the mpirun chosen and
the options will automatically be remapped as required for the actual mpirun. This
makes it possible to write scripts that call shmemrun without exposing these details of
the underlying mpirun command.

If the shmemrun script finds the special -- option while processing the option list, that
option is deleted and subsequent options and command line arguments are passed
through without any modification. Using this option is useful to prevent shmemrun from
modifying options of the program that are being run.

6.4.3.2 Running programs without using shmemrun

If you do not wish to use this wrapper script, then you must arrange for the SHMEM
libraries to be found at run time using $LD_LIBRARY_PATH or an equivalent
mechanism, and ensure that PSM support is enabled in your MPI implementation. The
libraries can be found at:

$SHMEM_DIR/lib64/$MPI
Where $SHMEM_DIR denotes the top-level directory of the SHMEM installation,
typically /usr/shmem/intel, and $MPI is your choice of MPI (one of mvapich,
mvapich2, or openmpi).

Additionally, the PSM receive thread and back-trace must be disabled using the
following commands:

export PSM_RCVTHREAD=0

export IPATH_NO_BACKTRACE=1

6.5 Intel SHMEM Relationship with MPI
Intel SHMEM requires the Intel PSM layer to provide the network transport function and
this runs exclusively on Intel HCAs. It also requires a compatible MPI implementation
(also running over PSM) to provide program start up and other miscellaneous services.
The one-sided operations in Intel SHMEM are not layered on top of MPI, however, and
go directly to PSM to give low-latency, high-performance access to the HCA
architecture.

SHMEM Description and Configuration

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
92 Doc. Number: G91902 Revision: 006US

Typical SHMEM programs are written using calls to the SHMEM API and do not use MPI
calls. In this case the program binary generated by shmemcc contains references to the
SHMEM dynamic library and no references at all to MPI libraries. These binaries are
portable across all MPI implementations supported by Intel SHMEM. This is true of the
get/put micro-benchmarks provided by Intel SHMEM. The desired MPI can be
selected at run time simply by placing the desired mpirun on $PATH, or by using the
$SHMEM_MPIRUN environment variable.

Alternatively, it is possible to write hybrid SHMEM/MPI programs that use features from
both the SHMEM and MPI libraries. These programs must call shmem_init() to
initialize the SHMEM library state. They may also use MPI_Init() and
MPI_Finalize() if needed. There will be a direct one-to-one correspondence
between the SHMEM and MPI_COMM_WORLD rank assignments:

shmem_my_pe() will match MPI_Comm_rank() on MPI_COMM_WORLD

shmem_n_pes() will match MPI_Comm_size() on MPI_COMM_WORLD

Hybrid SHMEM/MPI programs must be linked against SHMEM libraries and the correct
MPI libraries. It is recommended that the implementation of the MPI wrapper script(s)
(mpicc) is used for compilation and that additional options are specified to find the
SHMEM include and library files. One approach is to set up the shmemcc wrapper script
to use mpicc as its compiler using the environment variable setting:

export SHMEM_CC=mpicc

This setting needs to be adjusted if mpicc is not already on the $PATH. The generated
binary has references to both SHMEM and MPI libraries and is specific to that MPI
implementation. Intel recommends that shmemrun is used to run the program. The
user must ensure that the correct mpirun is picked up from $PATH or using the
$SHMEM_MPIRUN environment variable.

6.6 Slurm Integration
Intel SHMEM relies on an MPI implementation to provide a run-time environment for
jobs. This includes job start-up, stdin/stdout/stderr routing, and other low performance
control mechanisms. Intel SHMEM programs are typically started using shmemrun
which is a wrapper script around mpirun. The shmemrun script takes care of setting up
the environment appropriately, and also provides a common command-line interface
regardless of which underlying mpirun is used.

Integration of Intel SHMEM with slurm comes from the slurm integration provided by
the MPI implementation. The slurm web pages describe 3 approaches. Please refer to
points 1, 2 and 3 on the following web-page:

https://computing.llnl.gov/linux/slurm/mpi_guide.html

Below are various options for integration of the Intel SHMEM and slurm.

6.6.1 Full Integration

This approach fully integrates Intel SHMEM start-up into slurm and is available when
running over MVAPICH2. The SHMEM program is executed using srun directly. For
example:

srun -N 16 shmem-test-world

https://computing.llnl.gov/linux/slurm/mpi_guide.html

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 93

SHMEM Description and Configuration

To run a program on 16 nodes. slurm starts the processes using slurmd and provides
communication initialization. The implementation typically relies on slurm provided a
process management interface (PMI) library and the MPI implementation using that so
that each MPI process can hook into slurm.

The user is responsible for setting up the environment appropriately. This includes
adding Intel SHMEM's library directory to LD_LIBRARY_PATH. See “Running SHMEM
Programs” on page 90 for more information on the environment setup.

6.6.2 Two-step Integration

This approach is integrated, but is performed in 2 steps to allocate the nodes and run
the job. This is available when running over Open MPI. The run command is now:

salloc -N 16 shmemrun shmem-test-world

The salloc allocates 16 nodes and runs one copy of shmemrun on the first allocated
node which then creates the SHMEM processes. shmemrun invokes mpirun, and
mpirun determines the correct set of hosts and required number of processes based
on the slurm allocation that it is running inside of. Since shmemrun is used in this
approach there is no need for the user to set up the environment.

6.6.3 No Integration

This approach allows a job to be launched inside a slurm allocation but with no
integration. This approach can be used for any supported MPI implementation.
However, it requires that a wrapper script is used to generate the hosts file. slurm is
used to allocate nodes for the job, and the job runs within that allocation but not under
the control of the slurm daemon. One way to use this approach is:

salloc -N 16 shmemrun_wrapper shmem-test-world

Where shmemrun_wrapper is a user-provided wrapper script that creates a hosts file
based on the current slurm allocation and simply invokes mpirun with the hosts file
and other appropriate options. Note that ssh/rsh will be used for starting processes not
slurm.

6.7 Sizing Global Shared Memory
SHMEM provides shmalloc, shrealloc and shfree calls to allocate and release
memory using a symmetric heap. These functions are called collectively across the
processing elements (PEs) so that the memory is managed symmetrically across them.
The extent of the symmetric heap determines the amount of global shared memory per
PE that is available to the application.

This is an important resource and this section discusses the mechanisms available to
size it. Applications can access this memory in various ways and this maps into quite
different access mechanisms:

• Accessing global shared memory on my PE: This is achieved by direct loads and
stores to the memory.

• Accessing global shared memory on a PE on the same host: This is achieved by
mapping the global shared memory using the local shared memory mechanisms
(for example, System V shared memory) operating system and then accessing the
memory by direct loads and stores. This means that each PE on a host needs to
map the global shared memory of each other PE on that host. These accesses do
not use the adapter and interconnect.

SHMEM Description and Configuration

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
94 Doc. Number: G91902 Revision: 006US

• Accessing global shared memory on a PE on a different host: This is achieved by
sending put, get, and atomic requests across the interconnect.

Note: There is a connection between the sizing of the global shared memory and local shared
memory because of the mechanism used for accessing global shared memory in a PE
that happens to be on the same host.

The Intel SHMEM library pre-allocates room in the virtual address space according to
$SHMEM_SHMALLOC_MAX_SIZE (default of 4GB). It then populates this with enough
pages to cover $SHMEM_SHMALLOC_INIT_SIZE (default 16MB). The global shared
memory segment can then grow dynamically from its initial size up to its maximum
size. If an allocation attempts to exceed the maximum size allocations are no longer
guaranteed to succeed, and will fail if there is no room in the virtual memory space of
the process following the global shared memory segment. Upon failure the call to
shmalloc or shrealloc returns NULL. The only down-side of using a large maximum
size is occupancy of virtual address space (48 bits for 64-bit processes is very
plentiful), and set-up of page table entries by the OS. A reasonable limit is 4GB per
process. One side-effect of this approach is that SHMEM programs consume a large
amount of virtual memory when viewed with the "top" program. This is due to the large
maximum size setting. The RES field of top indicates the actual amount of memory
that is resident in memory (for example, in actual use).

If a SHMEM application program runs out of global shared memory, increase the value
of $SHMEM_SHMALLOC_MAX_SIZE. The value of $SHMEM_SHMALLOC_INIT_SIZE can
also be changed to pre-allocate more memory up front rather than dynamically.

By default Intel SHMEM will use the same base address for the symmetric heap across
all PEs in the job. This address can be changed using the
$SHMEM_SHMALLOC_BASE_ADDR environment variable. It will be rounded up to the
nearest multiple of the page size. The virtual address range specified by this base
address and the maximum size must not clash with any other memory mapping. If any
SHMEM process in a job has a memory mapping clash, the Intel SHMEM library will fail
during shmem_init(). With 64-bit programs, a large virtual address space (for
example, 48 bits in many modern processors) and a reasonably homogeneous cluster,
it is expected that such failures will be rare. The default value of
$SHMEM_SHMALLOC_BASE_ADDR has been chosen to work on the supported
distributions and processors. In the rare event of a failure, the value of
$SHMEM_SHMALLOC_BASE_ADDR can be changed using the environment variable.

Alternatively, if $SHMEM_SHMALLOC_BASE_ADDR is specified as 0, then each SHMEM
process will independently choose its own base virtual address for the global shared
memory segment. In this case, the values for a symmetric allocation using
shmalloc() are no longer guaranteed to be identical across the PEs. The Intel SHMEM
implementation takes care of this asymmetry by using offsets relative to the base of
the symmetric heap in its protocols. However, applications that interpret symmetric
heap pointer values or exchange symmetric heap pointer values between PEs will not
behave as expected.

It is possible for SHMEM to fail at start-up or while allocating global shared memory due
to limits placed by the operating system on the amount of *local* shared memory that
SHMEM can use. Since SHMEM programs can use very large amounts of memory this
can exceed typical OS configurations. As long as there is sufficient physical memory for
the program, the following steps can be used to solve local shared memory allocation
problems:

• Check for low ulimits on memory:

ulimit -l : max locked memory (important for PSM not SHMEM)

ulimit -v : max virtual memory

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 95

SHMEM Description and Configuration

• Check the contents of these sysctl variables:

sysctl kernel.shmmax ; maximum size of a single shm allocation in
bytes

sysctl kernel.shmall ; maximum size of all shm allocations in
“pages”

sysctl kernel.shmnmi ; maximum number of shm segments

• Check the size of /dev/shm:

df /dev/shm

• Check for stale files in /dev/shm:

ls /dev/shm

If any of these checks indicate a problem, ask the cluster administrator to increase the
limit.

6.8 Progress Model
Intel SHMEM supports active and passive progress models. Active progress means that
the PE must actively call into SHMEM for progress to be made on SHMEM one-sided
operations. Passive progress means that progress on SHMEM one-sided operations can
occur without the application needing to call into SHMEM. Active progress is the default
mode of operation for Intel SHMEM. Passive progress can be selected using an
environment variable where required.

6.8.1 Active Progress

In the active progress mode SHMEM progress is achieved when the application calls
into the SHMEM library. This approach is well matched to applications that call into
SHMEM frequently, for example, to have a fine grained mix of SHMEM operations and
computation. This mix is typical of many SHMEM applications. Applications that spend
large amount of contiguous time in computation without calling SHMEM routines will
cause SHMEM progress to be delayed for that period of time. Additionally, applications
must not poll on locations waiting for puts to arrive without calling SHMEM, since
progress will not occur and the program will hang. Instead, SHMEM applications should
use one of the wait synchronization primitives provided by SHMEM. In active progress
mode Intel SHMEM will achieve full performance.

6.8.2 Passive Progress

In the passive progress mode SHMEM progress will continue to occur when the
application calls into SHMEM, but can additionally occur in the background when the
application is not calling into SHMEM. This is achieved using an additional progress
thread per PE. The progress thread is provided by PSM and is scheduled at a relatively
low frequency, typically 10 to 100 times a second. This thread will cause independent
SHMEM progress where required, both on the initiator side and the target side of
SHMEM operations. In this mode applications can poll on locations waiting for puts to
arrive without calling SHMEM. Progress will be achieved in this case by the progress
thread, though it will incur the scheduling latency for the progress thread which may
have a significant impact on overall performance if this idiom is used frequently. The
scheduling frequency of the PSM progress thread can be tuned as described in
“Environment Variables” on page 96.

Other performance effects of using passive progress include the following:

SHMEM Description and Configuration

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
96 Doc. Number: G91902 Revision: 006US

• The progress thread consumes some CPU cycles, though this is low because the
progress thread runs infrequently.

• The SHMEM library uses additional locks in its implementation to protect its data
structures against concurrent updates from the PE thread and the progress thread.
There is a slight additional cost in the performance critical path because of this
locking. This cost is minimal because contention on the lock is very low (the
progress thread runs infrequently) and because each progress thread runs on the
same CPU core as the corresponding PE thread (giving good cache locality for the
lock).

• SHMEM's long message protocol is disabled. This is because the long message
protocol implementation does not support passive progress. The effect of disabling
this is to reduce long message bandwidth to that which can be achieved with the
short message protocol. There is no effect on the bandwidth for message sizes
below the long message break-point, which is set to 16KB by default.

6.8.3 Active versus Passive Progress

It is expected that most applications will be run with Intel SHMEM's active progress
mode since this gives full performance. The passive progress mode will typically be
used in the following circumstances:

• For applications that use a polling idiom that is incompatible with the active
progress mode, and where the application programmer is unable or unwilling to
recode to use the appropriate SHMEM wait primitive.

• For compliance to a SHMEM standard that has a passive progress requirement.

6.9 Environment Variables
Table 6-1 list the environment variables that are currently provided by the SHMEM run
time library.

Note: The set of supported environment variables and their defaults may vary.from release to
release.

Table 6-1. SHMEM Run Time Library Environment Variables

Environment Variable Default Description

$SHMEM_SHMALLOC_INIT_S
IZE

16MB Initial size of the global shared memory
segment.

$SHMEM_SHMALLOC_MAX_SI
ZE

4GB Maximum size of the global shared memory
segment.

$SHMEM_SHMALLOC_CHECK on

Shared memory consistency checks set for 0
to disable and 1 to enable. These are good
checks for correctness but degrade the
performance of shmalloc() and shfree().
These routines are usually not important for
benchmark performance, so for now the
checks are turned on to catch bugs early.

$SHMEM_IDENTIFY
If set, each SHMEM process will print out the
SHMEM identity string and the path to the
SHMEM library file.

$SHMEM_GET_REQ_LIMIT 64

Maximum number of outstanding short get
requests for this end-point for the short get
protocol (0 means unlimited). Each short get
request can be up to 2KB.

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 97

SHMEM Description and Configuration

The command shmemrun automatically propagates SHMEM* environment variables
from its own environment to all the SHMEM processes. This means that the
environment variables can be simply setup in the front-end shell used to invoke
shmemrun. The command shmemrun also has its own environment variables that are
listed in Table 6-2.

6.10 Implementation Behavior
Some SHMEM properties are not fully specified by the SHMEM API specification. This
section discusses the behavior for the Intel SHMEM implementation.

For a put operation, these descriptions use the terms "local completion" and “remote
completion”. Once a put is locally complete, the source buffer on the initiating PE is
available for reuse. Until a put is locally complete the source buffer must not be
modified since that buffer is in use for the put operation. A blocking put is locally
complete immediately upon return from the put. A non-blocking put is not locally
complete upon return from the put<V_Variable>—different mechanisms are used for
detecting local completion using either an explicit handle (use shmem_test_nb() or
shmem_wait_nb()) or a NULL handle (use shmem_quiet()). Once a put is remotely

$SHMEM_GET_LONG_REQ_LI
MIT

16
Maximum number of outstanding get
requests for this end-point for the long get
protocol (0 means unlimited).

$SHMEM_PUT_FRAG_LIMIT 4096

Maximum number of outstanding put
fragments for this end-point for the short put
protocol (0 means unlimited). Each short put
fragment can be up to 2KB.

$SHMEM_PUT_LONG_FRAG_L
IMIT

128
Maximum number of outstanding put
fragment requests for this end-point for the
long get protocol (0 means unlimited).

$SHMEM_GET_LONG_SIZE
8KB for non-blocking
gets

32KB for blocking
gets

Gets of this size and larger use the SHMEM
long get message protocol. Note that the
parameter only allows the size to be changed
in unison for both non-blocking and blocking
gets.

$SHMEM_PUT_LONG_SIZE
8KB for non-blocking
puts
16KB for blocking
puts

Puts of this size and larger use the SHMEM
long put message protocol. Note that the
parameter only allows the size to be changed
in unison for both non-blocking and blocking
puts.

$SHMEM_PUT_REPLY_COMBI
NING_COUNT

8 Number of consecutive put replies on a flow
to combine together into a single reply.

Table 6-1. SHMEM Run Time Library Environment Variables (Continued)

Environment Variable Default Description

Table 6-2. shmemrun Environment Variables

Environment Variable Default Description

$SHMEM_MPIRUN mpirun from the PATH Specifies where to find mpirun.

$SHMEMRUN_VERBOSE Enables verbose output for shmemrun.

$SHMEMRUN_SLEEP Specifies a sleep time (in seconds) after the job
completes. This variable is intended for testing use.

$SHMEMRUN_TIMEOUT
Specifies a time-out value (in seconds). When the
timeout value is reached, the mpirun is killed. This
variable is intended for testing use.

SHMEM Description and Configuration

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
98 Doc. Number: G91902 Revision: 006US

complete the destination buffer on the target PE is fully written and available for use.
The mechanism provided by SHMEM for detecting remote completion are described
below.

• shmem_fence() - This function ensures that all puts issued by this PE prior to the
fence will become remotely visible before any puts issued by this PE after the
fence. The call does not necessarily imply that any of the prior puts are actually
remotely visible at the point of the fence, only that this ordering is guaranteed.

• shmem_quiet() - This function waits for remote completion of all puts issued by
this PE prior to the quiet operation. Therefore, once the quiet operation returns, it
is guaranteed that all those puts will be remotely visible to other PEs. This
guarantee of remote completion applies to all puts<V_Variable>—blocking puts,
non-blocking puts with handles, and non-blocking puts with NULL handles.
Additionally, this function additionally waits for local completion of non-blocking
puts and non-blocking gets that were issued with a NULL handle.

• shmem_test_nb() and shmem_wait_nb() can be used to test and wait for local
completion of a non_blocking operation. For a non-blocking put, this does not
indicate whether remote completion has occurred.

Additional properties of the Intel SHMEM implementation are:
• The Intel SHMEM implementation makes no guarantees as to the ordering in which

the bytes of a put operation are delivered into the remote memory. It is *not* a
safe assumption to poll or read certain bytes of the put destination buffer (for
example, the last 8 bytes) to look for a change in value and then infer that the
entirety of the put has arrived. The correct mechanism for this is to use the
shmem_quiet() operation to force remote completion, or to use the following type
of sequence:
— Initiator side:

• Issue a batch of puts all unordered with respect to each other

• shmem_fence()

• 8 byte put to a sync location
— Target side:

• Wait for the sync location to be written
• Now it is safe to make observations on all puts prior to fence
• shmem_int_wait(), shmem_long_wait(), shmem_longlong_wait(),
shmem_short_wait(), shmem_wait(), shmem_int_wait_until(),
shmem_long_wait_until(), shmem_longlong_wait_until(),
shmem_short_wait_until(), shmem_wait_until() - These SHMEM
operations are provided for waiting for a variable in local symmetric memory to
change value due to an incoming put. In the active progress mode SHMEM
applications must use these routines for this purpose, and not implement their own
polling loop without SHMEM library calls. In the passive progress mode SHMEM
application may use a polling loop without a SHMEM library call. However,
performance will typically be substantially improved by using the SHMEM wait
operation instead.

• shmem_stack() is implemented as a no-op since this is a distributed memory
cluster architecture.

• shmem_ptr(void *target, int pe) returns the provided address, if the PE is my PE,
otherwise NULL. This implementation is sufficient to conform to the SHMEM API and
is appropriate for a distributed memory cluster architecture.

• shmem_clear_cache_inv(), shmem_clear_cache_line_inv(),
shmem_set_cache_inv(), shmem_set_cache_line_inv(),
shmem_udcflush(), and shmem_udcflush_line() are each implemented as a
no-op since there is no global memory caching in this implementation.

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 99

SHMEM Description and Configuration

• This SHMEM implementation allows remote access to variables that are in the
symmetric heap and static data/read-only data sections only. It does not support
static data sections in dynamically loaded libraries.

6.11 Application Programming Interface
Table 6-3 lists the provided SHMEM Application Programming Interface (API) calls and
details any restrictions.

Table 6-3. SHMEM Application Programming Interface Calls

Operation Calls

General Operations

shmem_init

start_pes

my_pe

_my_pe

shmem_my_pe

num_pes

_num_pes

shmem_n_pes

Symmetric heap

shmalloc

shmemalign

shfree

shrealloc

Contiguous Put Operations

shmem_short_p

shmem_int_p

shmem_long_p

shmem_float_p

shmem_double_p

shmem_longlong_p

shmem_longdouble_p

shmem_char_put

shmem_short_put

shmem_double_put

shmem_float_put

shmem_int_put

shmem_long_put

shmem_longdouble_put

shmem_longlong_put

shmem_put

shmem_put32

shmem_put64

shmem_put128

shmem_putmem

SHMEM Description and Configuration

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
100 Doc. Number: G91902 Revision: 006US

Non-blocking Put Operations

shmem_double_put_nb

shmem_float_put_nb

shmem_int_put_nb

shmem_long_put_nb

shmem_longdouble_put_nb

shmem_longlong_put_nb

shmem_put_nb

shmem_put32_nb

shmem_put64_nb

shmem_put128_nb

shmem_putmem_nb

shmem_short_put_nb

Strided Put Operations

shmem_double_iput

shmem_float_iput

shmem_int_iput

shmem_iput

shmem_iput32

shmem_iput64

shmem_iput128

shmem_long_iput

shmem_longdouble_iput

shmem_longlong_iput

shmem_short_iput

Indexed Put Operations
shmem_ixput

shmem_ixput32

shmem_ixput64

Put and Non-blocking Ordering, Flushing and
Completion

shmem_fence

shmem_quiet

shmem_wait_nb

shmem_test_nb

shmem_poll_nb
Same as shmem_test_nb, provided for compatibility

Contiguous Get Operations

shmem_short_g

shmem_int_g

shmem_long_g

shmem_float_g

shmem_double_g

shmem_longlong_g

shmem_longdouble_g

shmem_char_get

shmem_short_get

shmem_double_get

shmem_float_get

shmem_int_get

shmem_long_get

shmem_longdouble_get

shmem_longlong_get

shmem_get

shmem_get32

shmem_get64

shmem_get128

shmem_getmem

Table 6-3. SHMEM Application Programming Interface Calls (Continued)

Operation Calls

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 101

SHMEM Description and Configuration

Non-blocking Get Operations

shmem_double_get_nb

shmem_float_get_nb

shmem_int_get_nb

shmem_long_get_nb

shmem_longdouble_get_nb

shmem_longlong_get_nb

shmem_short_get_nb

shmem_get_nb

shmem_get32_nb

shmem_get64_nb

shmem_get128_nb

shmem_getmem_nb

Strided Get Operations

shmem_double_iget

shmem_float_iget

shmem_int_iget

shmem_iget

shmem_iget32

shmem_iget64

shmem_iget128

shmem_long_iget

shmem_longdouble_iget

shmem_longlong_iget

shmem_short_iget

Indexed Get Operations
shmem_ixget

shmem_ixget32

shmem_ixget64

Barriers
barrier

shmem_barrier_all

shmem_barrier

Broadcasts
shmem_broadcast

shmem_broadcast32

shmem_broadcast64

Concatenation

shmem_collect

shmem_collect32

shmem_collect64

shmem_fcollect

shmem_fcollect32

shmem_fcollect64

Synchronization operations

shmem_int_wait

shmem_long_wait

shmem_longlong_wait

shmem_short_wait

shmem_wait

shmem_int_wait_until

shmem_long_wait_until

shmem_longlong_wait_until

shmem_short_wait_until

shmem_wait_until

Table 6-3. SHMEM Application Programming Interface Calls (Continued)

Operation Calls

SHMEM Description and Configuration

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
102 Doc. Number: G91902 Revision: 006US

Atomic operations

shmem_double_swap

shmem_float_swap

shmem_short_swap

shmem_int_swap

shmem_long_swap

shmem_longlong_swap

shmem_swap

shmem_short_cswap

shmem_int_cswap

shmem_long_cswap

shmem_longlong_cswap

shmem_short_mswap

shmem_int_mswap

shmem_long_mswap

shmem_longlong_mswap

shmem_short_inc

shmem_int_inc

shmem_long_inc

shmem_longlong_inc

shmem_short_add

shmem_int_add

shmem_long_add

shmem_longlong_add

shmem_short_finc

shmem_int_finc

shmem_long_finc

shmem_longlong_finc

shmem_short_fadd

shmem_int_fadd

shmem_long_fadd

shmem_longlong_fadd

Table 6-3. SHMEM Application Programming Interface Calls (Continued)

Operation Calls

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 103

SHMEM Description and Configuration

Reductions

shmem_int_and_to_all

shmem_long_and_to_all

shmem_longlong_and_to_all

shmem_short_and_to_all

shmem_int_or_to_all

shmem_long_or_to_all

shmem_longlong_or_to_all

shmem_short_or_to_all

shmem_int_xor_to_all

shmem_long_xor_to_all

shmem_longlong_xor_to_all

shmem_short_xor_to_all

shmem_double_min_to_all

shmem_float_min_to_all

shmem_int_min_to_all

shmem_long_min_to_all

shmem_longdouble_min_to_all

shmem_longlong_min_to_all

shmem_short_min_to_all

shmem_double_max_to_all

shmem_float_max_to_all

shmem_int_max_to_all

shmem_long_max_to_all

shmem_longdouble_max_to_all

shmem_longlong_max_to_all

shmem_short_max_to_all

shmem_complexd_sum_to_all
Complex collectives are not implemented
shmem_complexf_sum_to_all
Complex collectives are not implemented
shmem_double_sum_to_all

shmem_float_sum_to_all

shmem_int_sum_to_all

shmem_long_sum_to_all

shmem_longdouble_sum_to_all

shmem_longlong_sum_to_all

shmem_short_sum_to_all

shmem_complexd_prod_to_all
Complex collectives are not implemented
shmem_complexf_prod_to_all
Complex collectives are not implemented
shmem_double_prod_to_all

shmem_float_prod_to_all

shmem_int_prod_to_all

shmem_long_prod_to_all

shmem_longdouble_prod_to_all

shmem_longlong_prod_to_all

shmem_short_prod_to_all

All-to-all
(an extension beyond classic SHMEM)

shmem_alltoall

shmem_alltoall32

shmem_alltoall64

Table 6-3. SHMEM Application Programming Interface Calls (Continued)

Operation Calls

SHMEM Description and Configuration

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
104 Doc. Number: G91902 Revision: 006US

6.12 SHMEM Benchmark Programs
The following SHMEM micro-benchmark programs are included:

• shmem-get-latency: measures get latency
• shmem-get-bw: measures streaming get bandwidth (uni-directional)
• shmem-get-bibw: measures streaming get bandwidth (bi-directional)
• shmem-put-latency: measures put latency
• shmem-put-bw: measures streaming put bandwidth (uni-directional)
• shmem-put-bibw: measures streaming put bandwidth (bi-directional)

The programs can be used to measure round-trip get latency, one way put latency, get
and put bandwidth, as well as get and put message rates.

The benchmarks must be run with an even number of processes. They are typically run
on exactly two hosts with the processes equally-divided between them. The processes
are split up into pairs, with one from each pair on either host and each pair is loaded
with the desired traffic pattern. The benchmark automatically determines the correct
mapping, regardless of the actual rank order of the processes and their mapping to the
two hosts.

Locks
shmem_set_lock

shmem_clear_lock

shmem_test_lock

Events

clear_event

set_event

wait_event

test_event

General Operations
(for compatibility)

globalexit
Allows any process to abort the job
shmem_finalize
Call to terminate the SHMEM library
shmem_pe_accessible
Tests PE for accessibility
shmem_addr_accessible
Test address on PE for accessibility

Cache Operations
(for compatibility)

shmem_clear_cache_inv
Implemented as a no-op
shmem_clear_cache_line_inv
Implemented as a no-op
shmem_set_cache_inv
Implemented as a no-op
shmem_set_cache_line_inv
Implemented as a no-op
shmem_udcflush
Implemented as a no-op
shmem_udcflush_line
Implemented as a no-op

Stack/Pointer Operations
(for compatibility)

shmem_stack
Implemented as a no-op
shmem_ptr
Returns the address if the PE is my PE, otherwise NULL

Table 6-3. SHMEM Application Programming Interface Calls (Continued)

Operation Calls

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 105

SHMEM Description and Configuration

Alternatively, if the -f option is specified the benchmark is forced to use the rank order
when arranging the communication pattern. In this mode and with np ranks, each rank
i in (0, np/2) is paired with rank (np / 2) + i. For example, this mode can be used
to test SHMEM performance within a single node.

The micro-benchmarks have the command line options shown in Table 6-4

Additional SHMEM micro-benchmark programs are included to measure get and put
performance with randomized PE selection and randomized target memory locations,
all-to-all communication patterns using put, barrier and reduce:

6.12.0.0.1 Intel SHMEM random access benchmark

shmem-rand: randomized put/get benchmark
This is actually a hybrid SHMEM/MPI code, so a binary is provided per supported
MPI implementation. It has the following command line options:
Usage: shmem-rand [options] [list of message sizes].

Message sizes are specified in bytes (default = 8)
Options: See Table 6-5

Table 6-4. Intel SHMEM micro-benchmarks options

Option Description

-a INT a log2 of desired alignment for buffers (default = 12)

-b INT batch size, number of concurrent operations (default = 64)

-f force order for bifurcation of PEs based on rank order

-h displays the help page

-l INT set minimum message size (default = 2)

-m INT sets the maximum message size (default = 4194304)

Table 6-5. Intel SHMEM random access benchmark options

Option Description

-a use automatic (NULL) handles for NB ops (default explicit handles)

-b use a barrier every window

-c INTEGER specify loop count (see also -t)

-f fixed window size (default is scaled)

-h displays the help page

-l enable communication to local ranks

-m INTEGER[K] memory size in MB (default = 8MB): or in KB with a K suffix

-n use non-pipelined mode for NB ops (default pipelined)

-o OP choose OP from get, getnb, put, putnb

-p for blocking puts, no quiet every window (this is the default)

-q for blocking puts, use quiet every window

-r use ring pattern (default is random)

SHMEM Description and Configuration

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
106 Doc. Number: G91902 Revision: 006US

6.12.0.0.2 Intel SHMEM all-to-all benchmark

shmem-alltoall: all-to-all put benchmark
This is a hybrid SHMEM/MPI code, so a binary is provided per supported MPI
implementation. It has the following command line options:
Usage: /test/shmem-alltoall [options] [list of message sizes]

Message sizes are specified in bytes (default 8)
Options: See Table 6-6

6.12.0.0.3 Intel SHMEM barrier benchmark

shmem-barrier: barrier benchmark
Usage: shmem-barrier [options]
Options: See Table 6-7

-s enable communication to self

-t FLOAT if the loop count is not given, run the test for this many seconds (default is 10s)

-u run in uni-directional mode

-v verbose mode (repeat for more verbose)

-w INTEGER set the window size (default = 32)

-x INTEGER window size limit (default = 16384)

Table 6-5. Intel SHMEM random access benchmark options (Continued)

Option Description

Table 6-6. Intel SHMEM all-to-all benchmark options

Option Description

-a use automatic (NULL) handles for NB ops (default explicit handles)

-c INTEGER specify loop count (see also -t)

-f fixed window size (default is scaled)

-h displays the help page

-l enable communication to local ranks (including self)

-m INTEGER[K] memory size in MB (default = 8MB): or in KB with a K suffix

-n use non-pipelined mode for NB ops (default pipelined)

-o OP choose OP from put, or putnb

-p INTEGER offset for all-to-all schedule (default 1, usually set to ppn)

-r randomize all-to-all schedule

-s enable communication to self

-t FLOAT if the loop count is not given, run the test for this many seconds (default is 10s)

-v verbose mode (repeat for more verbose)

-w INTEGER set the window size (default = 32)

-x INTEGER window size limit (default = 16384)

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 107

SHMEM Description and Configuration

6.12.0.0.4 Intel SHMEM reduce benchmark

shmem-reduce: reduce benchmark
Usage: shmem-reduce [options]
Options: See Table 6-8

§ §

Table 6-7. Intel SHMEM barrier benchmark options

Option Description

-h displays the help page

-i INTEGER[K] outer iterations (default 1)

Table 6-8. Intel SHMEM reduce benchmark options

Option Description

-b INTEGER number of barriers between reduces (default 0)

-h displays the help page

-i INTEGER[K] outer iterations (default 1)

 -r INTEGER inner iterations (default 10000)

SHMEM Description and Configuration

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
108 Doc. Number: G91902 Revision: 006US

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 109

Virtual Fabric support in PSM

7.0 Virtual Fabric support in PSM

7.1 Introduction
Performance Scaled Messaging (PSM) provides support for full Virtual Fabric (vFabric)
integration, allowing users to specify IB Service Level (SL) and Partition Key (PKey), or
to provide a configured Service ID (SID) to target a vFabric. Support for using IB path
record queries to the Intel® True Scale Suite Fabric Manager (FM) during connection
setup is also available, enabling alternative switch topologies such as Mesh/Torus. Note
that this relies on the Distributed SA cache from Intel® True Scale Fabric Suite
FastFabric (FF).

All PSM enabled MPIs can leverage these capabilities transparently, but only one MPI (
Open MPI) is configured to support it natively. Native support here means that MPI
specific mpirun switches are available to activate/deactivate these features. Other MPIs
will require use of environment variables to leverage these capabilities. With MPI
applications, the environment variables need to be propagated across all
nodes/processes and not just the node from where the job is submitted/run. The
mechanisms to do this are MPI specific, but for two common MPIs the following may be
helpful:

• Open MPI: Use –x ENV_VAR=ENV_VAL in the mpirun command line.
Example:

mpirun –np 2 –machinefile machinefile -x PSM_ENV_VAR=PSM_ENV_VAL
prog prog_args

• MVAPICH2: Use mpirun_rsh to perform job launch. Do not use mpiexec or
mpirun. Specify the environment variable and value in the mpirun command line
before the program argument.
Example:

mpirun_rsh –np 2 –hostfile machinefile PSM_ENV_VAR=PSM_ENV_VAL
prog prog_args

Some of the features available require appropriate versions of associated software and
firmware for correct operation. These requirements are listed in the relevant sections.

7.2 Virtual Fabric Support
Virtual Fabric (vFabric) in PSM is supported with the FM. The latest version of the FM
contains a sample ifs_fm.xml file with pre-configured vFabrics for PSM. Sixteen
unique Service IDs have been allocated for PSM enabled MPI vFabrics to ease their
testing however any Service ID can be used. Refer to the Intel® True Scale Fabric Suite
Fabric Manager User Guide on how to configure vFabrics.

There are two ways to use vFabric with PSM. The “legacy” method requires the user to
specify the appropriate SL and Pkey for the vFabric in question. For complete
integration with vFabrics, users can now specify a Service ID (SID) that identifies the
vFabric to be used. PSM will automatically obtain the SL and Pkey to use for the vFabric
from the FM via path record queries.

Virtual Fabric support in PSM

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
110 Doc. Number: G91902 Revision: 006US

7.3 Using SL and PKeys
SL and Pkeys can be specified natively for Open MPI. For other MPIs use the following
list of environment variables to specify the SL and Pkey. The environment variables
need to be propagated across all processes for correct operation.

Note: This is available with Open MPI v1.3.4rc4 and above only!
• Open MPI: Use mca parameters (mtl_psm_ib_service_level and
mtl_psm_ib_pkey) to specify the pkey on the mpirun command line.
Example:

mpirun –np 2 –machinefile machinefile -mca
mtl_psm_ib_service_level SL -mca mtl_psm_ib_pkey Pkey prog
prog_args

• Other MPIs can use the following environment variables that are propagated across
all processes. This process is MPI library specific but samples on how to do this for
Open MPI and MVAPICH2 are listed in the “Introduction” on page 109.
— IPATH_SL=SL # Service Level to Use 0-15
— PSM_PKEY=Pkey # Pkey to use

7.4 Using Service ID
Full vFabric integration with PSM is available, allowing the user to specify a SID. For
correct operation, PSM requires the following components to be available and
configured correctly.

• Intel host FM Configuration – PSM MPI vFabrics need to be configured and enabled
correctly in the intel_fm.xml file. 16 unique SIDs have been allocated in the
sample file.

• OFED+ library needs to be installed on all nodes. This is available as part of
FastFabric Toolset.

• Intel Distributed SA needs to be installed, configured and activated on all the
nodes. This is part of FastFabric Toolset. Please refer to Intel® True Scale Fabric
Suite FastFabric User Guide on how to configure and activate the Distributed SA.
The SIDs configured in the FM configuration file should also be provided to the
Distributed SA for correct operation.

Service ID can be specified natively for Open MPI. For other MPIs use the following list
of environment variables. The environment variables need to be propagated across all
processes for correct operation.

• Open MPI: Use mca parameters (mtl_psm_ib_service_id and
mtl_psm_path_query) to specify the service id on the mpirun command line.
Example:

mpirun –np 2 –machinefile machinefile -mca mtl_psm_path_query opp
-mca mtl_psm_ib_service_id SID prog prog_args

• Other MPIs can use the following environment variables:
— PSM_PATH_REC=opp # Path record query mechanism to use.

Always specify opp

— PSM_IB_SERVICE_ID=SID # Service ID to use

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 111

Virtual Fabric support in PSM

7.5 SL2VL mapping from the Fabric Manager
PSM is able to use the SL2VL table as programmed by the FM. Prior releases required
manual specification of the SL2VL mapping via an environment variable.

7.6 Verifying SL2VL tables on Intel 7300 Series HCAs
iba_saquery can be used to get the SL2VL mapping for any given port however, Intel
7300 series HCAs exports the SL2VL mapping via sysfs files. These files are used by
PSM to implement the SL2VL tables automatically. The SL2VL tables are per port and
available under /sys/class/infiniband/hca name/ports/port #/sl2vl. The
directory contains 16 files numbered 0-15 that specify the SL. Listing the SL files
returns the VL as programmed by the SL.

§ §

Virtual Fabric support in PSM

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
112 Doc. Number: G91902 Revision: 006US

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 113

PSM Multi-rail

8.0 PSM Multi-rail

Multi-rail means that a process can use multiple network interface cards to transfer
messages. With modern computer servers supporting multiple HCAs, multi-rail
improves network performance for applications.

Prior to supporting PSM multi-rail, PSM could use multiple cards/ports for a single
application, but for a particular process in the job, only one port could be used to
transfer a message. All the ports had to be on the same fabric in order for the
application to use them.

The PSM multi-rail feature can be applied to a single fabric with multiple ports, or
multiple fabrics. It does not change the PSM API application and it is binary compatible
to previous PSM versions. The main goal is to use multiple HCAs to transfer messages
to improve the message bandwidth.

Note: Intel does not support the use of dual ported cards where both ports on the card are
connected for use with PSM_MULTIRAIL. PSM_MUTIRAIL is the PSM environment variable that
is used to enable this feature in PSM. If PSM_MULTIRAIL is not enabled, it is supported.

8.1 User Base
The system administrator sets up a PSM multi-rail system using multiple True Scale
HCAs per node. If multiple fabrics are desired, the system administrator connects the
HCA(s) to multiple fabrics, and configures each fabric with different subnet IDs.

PSM by default uses the single-rail configuration, where each process only uses a single
context/sub-context to communicate to other processes. The user must tell PSM to use
multiple rail communication on systems with multiple cards per node.

On a multi-fabric system, if multi-rail is not turned on, the user must set IPATH_UNIT
environment variable (from 0)to tell the PSM job which HCA to use. The HCAs have to
be on the same fabric, otherwise, the same job might try to use HCAs from different
fabrics and cause the job to hang because there is no path between fabrics. If multi-rail
is turned on, PSM can reorder and automatically match the HCAs by using the subnet
ID. That is why different subnet IDs are required for different fabrics.

8.2 Environment Variables
The following are environment variables that can be set:

PSM_MULTIRAIL=n – n can be any value. If this environment variable is set, to a
non-zero value, PSM tries to setup multiple rails. Otherwise, multi-rail is turned off.
How multi-rails are setup and how many rails are setup depends on environment
variable PSM_MULTIRAIL_MAP is set or not.

PSM_MULTIRAIL_MAP=unit:port,unit:port,unit:port,… – unit is from 0, port is
from 1. This environment variable tells PSM which unit/port pair is used to setup a rail,
multiple specifications are separated by a comma. If only one rail is specified, it is

PSM Multi-rail

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
114 Doc. Number: G91902 Revision: 006US

equivalent to a single-rail case, the Unit/Port is specified instead of using Unit/Port
assigned by QIB driver. PSM scans the above pattern until a violation or error is
encountered, and uses the information it has gathered.

8.3 Examples of Single- and Multi-rail
The following are a few examples of single- and multi-rail configurations for both
single- and multi-fabrics.

Example 8-1. Single fabric, each node has two HCAs, Unit 0 has one port, Unit 1 has two
ports

Figure 8-1 shows an example of a single fabric with each node having two cards. Unit 0
(qib0) has one port and Unit 1 (qib1) has two ports.

Environment Variables
• PSM_MULTIRAIL is not set. PSM is using single-rail, the Unit/Port/context

selection is from the assignment of QIB driver. IPATH_UNIT and IPATH_PORT
are set by the user to specify the Unit/Port to use.

• PSM_MULTIRAIL is set. PSM checks that there are two units in the system. The
first available port is Port 1 for Unit 0. The next available port is Port 1 for Unit 1.
PSM by default will use a PSM_MULTIRAIL_MAP of 0:1,1:1. Since this a single
fabric, all of the ports have the same subnet ID. PSM sets up the first (master)
connection over 0:1, and sets up the second slave connection over 1:1

• PSM_MULTIRAIL=1 and PSM_MULTIRAIL_MAP=1:2,0:1 The user specifies
the map, how to use the Unit/Port, and PSM uses the given pairs. PSM sets up the
master connection over Unit 1 Port 2 and sets up the slave connection over Unit 0
Port 1. Since Unit 1 Port 1 is available, Unit 1 Port 2 will never be selected if it is not
specified in PSM_MULTIRAIL_MAP explicitly. The user can fine tune which port to
use.

Example 8-2. Multi-fabrics, with same subnet ID

Figure 8-2 shows an example of multiple fabrics with the same subnet ID.

Figure 8-1. Single fabric, each node has two cards, Unit 0 has one port, Unit 1 has two
ports

Figure 8-2. Multi-fabrics, with same subnet ID

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 115

PSM Multi-rail

Environment Variables
• PSM_MULTIRAIL is not set. There are multiple fabrics, therefore PSM will not

work if multi-rail is not turned on. If one process chooses Unit 0 Port 1 and another
process chooses Unit 1 Port 1, there is no path between these two processes and
the MPI job will fail to start.

• PSM_MULTIRAIL is set. The two fabrics have the same subnet ID and PSM does
not know which ports are in the same fabric. PSM does not work in this case.

Example 8-3. Multi-fabrics, single subnet ID, abnormal wiring.

Figure 8-3 shows an example of multiple fabrics with a single subnet ID, and abnormal
wiring.

Environment Variables
• PSM_MULTIRAIL is not set. PSM does not work since there are multiple fabrics.
• PSM_MULTIRAIL=1. The two fabrics have the same subnet ID, PSM does not

know which ports are in the same fabric. PSM does not work in this case.

Example 8-4. Multi-fabrics, different subnet IDs

Figure 8-4 shows an example of multiple fabrics with different subnet IDs.

Environment Variables
• PSM_MULTIRAIL is not set. PSM does not work because there are multiple

fabrics. Unit 0/Port 1 on first node has no connection to Unit 1/Port 1 on second
node.

• PSM_MULTIRAIL=1 automatic selection. Both nodes get Unit/Port pairs 0:1,1:2
first, after the PSM reordering based on subnet ID, the node on the left side will get
0:1,1:2 and the node on the right side gets 0:1,1:2. The PSM makes the master
rail on 0:1 of left node with 0:1 on right node. The slave rail is setup on 1:2 of the
left node with 1:2 of the right node. PSM works in this configuration/setting.

• PSM_MULTIRAIL=1 and PSM_MULTIRAIL_MAP=1:2,0:1. The user specifies
the Unit/Port pairs. PSM does not reorder them. Both nodes use 1:2 to make the
connection on the second fabric as the master rail, and set up the second rail over
0:1 on both sides. PSM works fine in this configuration.

Figure 8-3. Multi-fabrics, with same subnet ID, and abnormal wiring

Figure 8-4. Multi-fabrics, with different subnet IDs

PSM Multi-rail

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
116 Doc. Number: G91902 Revision: 006US

Example 8-5. Multi-fabrics, different subnet IDs, abnormal wiring.

Figure 8-5 shows an example of multiple fabrics with different subnet IDs and
abnormal wiring.

Environment Variables
• PSM_MULTIRAIL is not set. PSM does not work because there are multiple

fabrics.
• PSM_MULTIRAIL=1 automatic selection. Both nodes get Unit/Port pairs 0:1,1:2

first, after PSM reordering based on the subnet ID, the node on the left side will get
0:1,1:2 again and the node on the right side gets 1:2,0:1. The PSM makes the
master rail on 0:1 of the left node with 1:2 on the right node. The slave rail is setup
on 1:2 of left with 0:1 of right. PSM works in this configuration/setting.

• PSM_MULTIRAIL=1 and PSM_MULTIRAIL_MAP=1:2,0:1. The user specifies
the Unit/Port pairs. PSM does not reorder them. Both nodes use 1:2 to make a
connection, it fails because there is no path between them. PSM does not work in
this case.

§ §

Figure 8-5. Multi-fabrics, with different subnet IDs, and abnormal wiring

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 117

Dispersive Routing

9.0 Dispersive Routing

Infiniband* architecture uses deterministic routing that is keyed from the Destination
LID (DLID) of a port. The Intel® True Scale Suite Fabric Manager (FM) programs the
forwarding tables in a switch to determine the egress port a packet takes based on the
DLID.

Deterministic routing can create hotspots even in full bisection bandwidth (FBB) fabrics
for certain communication patterns if the communicating node pairs map onto a
common upstream link, based on the forwarding tables. Since routing is based on
DLIDs, the IB fabric provides the ability to assign multiple LIDs to a physical port using
a feature called Lid Mask Control (LMC). The total number of DLIDs assigned to a
physical port is 2^LMC with the LIDS being assigned in a sequential manner. The
common IB fabric uses a LMC of 0, meaning each port has 1 LID assigned to it. With
non-zero LMC fabrics, this results in multiple potential paths through the fabric to reach
the same physical port. For example, multiple DLID entries in the port forwarding table
that could map to different egress ports.

Dispersive routing, as implemented in the PSM, attempts to avoid congestion hotspots
described above by “spraying” messages across these paths. A congested path will not
bottleneck messages flowing down the alternate paths that are not congested. The
current implementation of PSM supports fabrics with a maximum LMC of 3 (8 LIDs
assigned per port). This can result in a maximum of 64 possible paths between a SLID,
DLID pair ([SLID, DLID],[SLID, DLID+1], [SLID,DLID+2]…..[SLID,DLID+8],[SLID+1,
DLID],[SLID+1, DLID+1]…..[SLID+7, DLID+8]). Keeping state associated with these
many paths requires large amount of memory resources, with empirical data showing
not much gain in performance beyond utilizing a small set of multiple paths. Therefore
PSM reduces the number of paths actually used in the above case to 8 where the
following paths are the only ones considered for transmission <V_Variable>— [SLID,
DLID], [SLID + 1, DLID + 1], [SLID + 2, DLID + 2] ….. [SLID + N, DLID + N]. This
makes the resource requirements manageable while providing most of the benefits of
dispersive routing (congestion avoidance by utilizing multiple paths).

Internally, PSM utilizes dispersive routing differently for small and large messages.
Large messages are any messages greater-than or equal-to 64K. For large messages,
the message is split into message fragments of 128K by default (called a window).
Each of these message windows is sprayed across a distinct path between ports. All
packets belonging to a window utilize the same path however the windows themselves
can take a different path through the fabric. PSM assembles the windows that make up
an MPI message before delivering it to the application. This allows limited out of order
semantics through the fabrics to be maintain with little overhead. Small messages on
the other hand always utilize a single path when communicating to a remote node
however different processes executing on a node can utilize different paths for their
communication between the nodes. For example, two nodes A and B each with 8
processors per node. Assuming the fabric is configured for a LMC of 3, PSM constructs
8 paths through the fabric as described above and a 16 process MPI application that
spans these nodes (8 process per node). Then:

• Each MPI process is automatically bound to a given CPU core numbered between
0-7. PSM does this at startup to get improved cache hit rates and other benefits.

• Small Messages sent from a process on core N will use path N.

Dispersive Routing

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
118 Doc. Number: G91902 Revision: 006US

Note: Only path N will be used by this process for all communications to any process on the
remote node.

• For a large message, each process will utilize all of the 8 paths and spray the
windowed messages across it.

The above highlights the default path selection policy that is active in PSM when
running on non-zero LMC configured fabrics. There are 3 other path selection policies
that determine how to select the path (or path index from the set of available paths)
used by a process when communicating with a remote node. The above path policy is
called adaptive. The 3 remaining path policies are static policies that assign a static
path on job startup for both small and large message transfers.

• Static_Src: Only one path per process is used for all remote communications.
The path index is based on the CPU number the process is running.

Note: Multiple paths are still used in the fabric if multiple processes (each on a different CPU)
are communicating.

• Static_Dest: The path selection is based on the CPU index of the destination
process. Multiple paths can be used if data transfer is to different remote processes
within a node. If multiple processes from Node A send a message to a single
process on Node B only one path will be used across all processes.

• Static_Base: The only path that is used is the base path [SLID,DLID] between
nodes regardless of the LMC of the fabric or the number of paths available. This is
similar to how PSM operated till the IFS 5.1 release.

Note: A fabric configured with LMC of 0 even with the default adaptive policy enabled
operates as the Static_Base policy as there only exists a single path between any pairs
of port.

§ §

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 119

gPXE

10.0 gPXE

gPXE is an open source (GPL) network bootloader. It provides a direct replacement for
proprietary PXE ROMs. See http://etherboot.org/wiki/index.php for documentation and
general information.

10.1 gPXE Setup
At least two machines and a switch are needed (or connect the two machines
back-to-back and run FM on the server).

• A DHCP server
• A boot server or http server (can be the same as the DHCP server)
• A node to be booted

Use a QLE7340 or QLE7342 adapter for the node.

The following software is included with the Intel OFED+ installation software package:
• gPXE boot image
• patch for DHCP server
• tool to install gPXE boot image in EPROM of card
• sample gPXE script

Everything that can be done with the proprietary PXE loader over Ethernet, can be
done with the gPXE loader over IB. The gPXE boot code is only a mechanism to load an
initial boot image onto the system. It is up to the downloaded boot image to do the
rest.

For example, the boot image could be:
• A stand-alone memory test program
• A diskless kernel image that mounts its file systems via NFS

Refer to http://www.faqs.org/docs/Linux-HOWTO/Diskless-HOWTO.html
• A Linux install image like kickstart, which then installs software to the local hard

drive(s). Refer to http://www.faqs.org/docs/Linux-HOWTO/KickStart-HOWTO.html
• A second stage boot loader
• A live CD Linux image
• A gPXE script

10.1.1 Required Steps

1. Download a copy of the gPXE image.
Located at:

• The executable to flash the EXPROM on the Intel HCAs is located at:
/usr/sbin/ipath_exprom

gPXE

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
120 Doc. Number: G91902 Revision: 006US

• The gPXE driver for QLE7300 series HCAs (the EXPROM image) is located at:
/usr/share/infinipath/gPXE/iba7322.rom

2. In order for dhcpd to correctly load, assign IP addresses to the HCA GUID. The
dhcpd on the existing DHCP server may need to be patched. This patch will be
provided via the gPXE rpm installation.

3. Write the ROM image to the HCA.
This only needs to be done once per HCA.

ipath_exprom -e -w iba7xxx.rom
In some cases, executing the above command results in a hang. If you experience
a hang, type CTRL+C to quit, then execute one flag at a time:

ipath_exprom -e iba7xxx.rom

ipath_exprom -w iba7xxx.rom

4. Enable booting from the HCA (gPXE device) in the BIOS

10.2 Preparing the DHCP Server in Linux
When the boot session starts, the gPXE firmware attempts to bring up an HCA network
link. If it succeeds to bring up a connected link, the gPXE firmware communicates with
the DHCP server. The DHCP server assigns an IP address to the gPXE client and
provides it with the location of the boot program.

10.2.1 Installing DHCP

gPXE requires that the DHCP server runs on a machine that supports IP over IB.

Note: Prior to installing DHCP, make sure that Intel OFED+ is already installed on your DHCP
server.
1. Download and install the latest DHCP server from www.isc.org.

Standard DHCP fields holding MAC address are not large enough to contain an
IPoIB hardware address. To overcome this problem, DHCP over IB messages
convey a client identifier field used to identify the DHCP session. This client
identifier field can be used to associate an IP address with a client identifier value,
such that the DHCP server will grant the same IP address to any client that conveys
this client identifier.

2. Unpack the latest downloaded DHCP server.

tar zxf dhcp-release.tar.gz

3. Uncomment the line /* #define USE_SOCKETS */ in
dhcp-release/includes/site.h

4. Change to the main directory.

cd dhcp-release

Note: If there is an older version of DHCP installed, save it before continuing with the
following steps.
5. Configure the source.

./configure

6. When the configuration of DHCP is finished, build the DHCP server.

http://www.isc.org

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 121

gPXE

make

7. When the DHCP has successfully finished building, install DHCP.

make install

10.2.2 Configuring DHCP

1. From the client host, find the GUID of the HCA by using p1info or look at the
GUID label on the HCA.

2. Turn the GUID into a MAC address and specify the port of the HCA that is going to
be used at the end, using b0 for port0 or b1 for port1.
For example for a GUID that reads 0x00117500005a6eec, the MAC address would
read: 00:11:75:00:00:5a:6e:ec:b0

3. Add the MAC address to the DHCP server.
The following is the sample /etc/dhcpd.conf file that specifies the HCA GUID for
the hardware address:

#

DHCP Server Configuration file.

see /usr/share/doc/dhcp*/dhcpd.conf.sample

#

ddns-update-style none;

subnet 10.252.252.0 netmask 255.255.255.0 {

option subnet-mask 255.255.255.0;

range dynamic-bootp 10.252.252.100 10.252.252.109;

host hl5-0 {

hardware unknown-32 00:11:75:00:00:7e:c1:b0;

option host-name "hl5";

}

host hl5-1 {

hardware unknown-32 00:11:75:00:00:7e:c1:b1;

option host-name "hl5";

gPXE

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
122 Doc. Number: G91902 Revision: 006US

}

filename "http://10.252.252.1/images/uniboot/uniboot.php";

}
In this example, host hl5 has a dual port HCA. hl5-0 corresponds to port 0, and
hl5-1 corresponds to port 1 on the HCA.

4. Restart the DHCP server

10.3 Netbooting Over IB
The following procedures are an example of netbooting over IB, using an HTTP boot
server.

10.3.1 Prerequisites

• Required steps from above have been executed.
• The BIOS has been configured to enable booting from the HCA. The gPXE IB device

should be listed as the first boot device.
• Apache server has been configured with PHP on your network, and is configured to

serve pages out of /vault.
• It is understood in this example that users would have their own tools and files for

diskless booting with an http boot server.

Note: The dhcpd and apache configuration files referenced in this example are included as
examples, and are not part of the Intel OFED+ installed software. Your site boot
servers may be different, see their documentation for equivalent information.

Note: Instructions on installing and configuring a dhcp server or a boot server are beyond the
scope of this document.

10.3.2 Boot Server Setup

Configure the boot server for your site.

Note: gPXE supports several file transfer methods such as TFTP, HTTP, iSCSI. This example
uses HTTP since it generally scales better and is the preferred choice.

Note: This step involves setting up a http server and needs to be done by a user that
understands server setup on the http server is being used
1. Install Apache.
2. Create an images.conf file and a kernels.conf file and place them in the

/etc/httpd/conf.d directory. This sets up aliases for and tells apache where to
find them:

/images <V_Variable>— http://<IP ADDRESS>/images/

/kernels <V_Variable>— http://<IP ADDRESS>/kernels/
The following is an example of the images.conf file

Alias /images /vault/images

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 123

gPXE

<Directory "/vault/images">

 AllowOverride All

 Options Indexes FollowSymLinks

 Order allow,deny

 Allow from all

</Directory>
The following is an example of the kernels.conf file

Alias /kernels /boot

<Directory "/boot">

 AllowOverride None

 Order allow,deny

 Allow from all

</Directory>

3. Make a uniboot directory:

mkdir -p /vault/images/uniboot

4. Create a initrd.img file
Prerequisites

• “gPXE Setup” on page 119 has been completed.
• “Preparing the DHCP Server in Linux” on page 120 has been completed

To add an IB driver into the initrd file, The IB modules need to be copied to the
diskless image. The host machine needs to be pre-installed with the Intel OFED+
Host Software that is appropriate for the kernel version the diskless image will run.
The Intel OFED+ Host Software is available for download from
http://downloadcenter.intel.com/

Note: The remainder of this section assumes that Intel OFED+ has been installed on the Host
machine.

Warning: The following procedure modifies critical files used in the boot procedure. It must be
executed by users with expertise in the boot process. Improper application of this
procedure may prevent the diskless machine from booting.

a. If /vault/images/initrd.img file is already present on the server machine,
back it up. For example:

cp -a /vault/images/initrd.img /vault/images/ initrd.img.bak

http://downloadcenter.intel.com/

gPXE

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
124 Doc. Number: G91902 Revision: 006US

b. The infinipath rpm will install the file
/usr/share/infinipath/gPXE/gpxe-qib-modify-initrd with contents
similar to the following example. You can either run the script to generate a new
initrd image, or use it as an example, and customize as appropriate for your site.

This assumes you will use the currently running version of
linux, and

that you are starting from a fully configured machine of the same
type

(hardware configuration), and BIOS settings.

#

start with a known path, to get the system commands

PATH=/sbin:/usr/sbin:/bin:/usr/bin:$PATH

start from a copy of the current initd image

mkdir -p /var/tmp/initrd-ib

cd /var/tmp/initrd-ib

kern=$(uname -r)

if [-e /boot/initrd-${kern}.img]; then

initrd=/boot/initrd-${kern}.img

elif [-e /boot/initrd]; then

initrd=/boot/initrd

else

echo Unable to locate correct initrd, fix script and re-run

exit 1

fi

cp ${initrd} initrd-ib-${kern}.img

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 125

gPXE

Get full original listing

gunzip -dc initrd-ib-${kern}.img | cpio -it --quiet | grep -v
'^\.$' | sort -o Orig-listing

start building modified image

rm -rf new # for retries

mkdir new

cd new

extract previous contents

gunzip -dc ../initrd-ib-${kern}.img | cpio --quiet -id

add infiniband modules

mkdir -p lib/ib

find /lib/modules/${kern}/updates -type f | \

 egrep
'(iw_cm|ib_(mad|addr|core|sa|cm|uverbs|ucm|umad|ipoib|qib).ko|rdm
a_|ipoib_helper)' | \

 xargs -I '{}' cp -a '{}' lib/ib

Some distros have ipoib_helper, others don't require it

if [-e lib/ib/ipoib_helper]; then

helper_cmd='/sbin/insmod /lib/ib/ipoib_helper.ko'

fi

On some kernels, the qib driver will require the dca module

if modinfo -F depends ib_qib | grep -q dca; then

 cp $(find /lib/modules/$(uname -r) -name dca.ko) lib/ib

 dcacmd='/sbin/insmod /lib/ib/dca.ko'

gPXE

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
126 Doc. Number: G91902 Revision: 006US

else

 dcacmd=

fi

IB requires loading an IPv6 module. If you do not have it in your
initrd, add it

if grep -q ipv6 ../Orig-listing; then

already added, and presumably insmod'ed, along with any
dependencies

v6cmd=

else

echo -e 'Adding IPv6 and related modules\n'

cp /lib/modules/${kern}/kernel/net/ipv6/ipv6.ko lib

IFS=' ' v6cmd='echo "Loading IPV6"

/sbin/insmod /lib/ipv6.ko'

Some versions of IPv6 have dependencies, add them.

xfrm=$(modinfo -F depends ipv6)

if [${xfrm}]; then

 cp $(find /lib/modules/$(uname -r) -name ${xfrm}.ko) lib

 IFS=' ' v6cmd='/sbin/insmod /lib/'${xfrm}'.ko

'"$v6cmd"

 crypto=$(modinfo -F depends $xfrm)

 if [${crypto}]; then

 cp $(find /lib/modules/$(uname -r) -name ${crypto}.ko) lib

 IFS=' ' v6cmd='/sbin/insmod /lib/'${crypto}'.ko

'"$v6cmd"

 fi

fi

fi

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 127

gPXE

we need insmod to load the modules; if not present it, copy it

mkdir -p sbin

grep -q insmod ../Orig-listing || cp /sbin/insmod sbin

echo -e 'NOTE: you will need to config ib0 in the normal way in
your booted root

filesystem, in order to use it for NFS, etc.\n'

Now build the commands to load the additional modules. We add
them just after

the last existing insmod command, so all other dependences will
be resolved

You can change the location if desired or necessary.

loading order is important. You can verify the order works ahead
of time

by running "/etc/init.d/openibd stop", and then running these
commands

manually by cut and paste

This will work on SLES, although different than the standard
mechanism

cat > ../init-cmds << EOF

Start of IB module block

$v6cmd

echo "loading IB modules"

/sbin/insmod /lib/ib/ib_addr.ko

/sbin/insmod /lib/ib/ib_core.ko

/sbin/insmod /lib/ib/ib_mad.ko

/sbin/insmod /lib/ib/ib_sa.ko

/sbin/insmod /lib/ib/ib_cm.ko

gPXE

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
128 Doc. Number: G91902 Revision: 006US

/sbin/insmod /lib/ib/ib_uverbs.ko

/sbin/insmod /lib/ib/ib_ucm.ko

/sbin/insmod /lib/ib/ib_umad.ko

/sbin/insmod /lib/ib/iw_cm.ko

/sbin/insmod /lib/ib/rdma_cm.ko

/sbin/insmod /lib/ib/rdma_ucm.ko

$dcacmd

/sbin/insmod /lib/ib/ib_qib.ko

$helper_cmd

/sbin/insmod /lib/ib/ib_ipoib.ko

echo "finished loading IB modules"

End of IB module block

EOF

first get line number where we append (after last insmod if any,
otherwse

at start

line=$(egrep -n insmod init | sed -n '$s/:.*//p')

if [! "${line}"]; then line=1; fi

sed -e "${line}r ../init-cmds" init > init.new

show the difference, then rename

echo -e 'Differences between original and new init command
script\n'

diff init init.new

mv init.new init

chmod 700 init

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 129

gPXE

now rebuilt the initrd image

find . | cpio --quiet -H newc -o | gzip > ../initrd-${kern}.img

cd ..

get the file list in the new image

gunzip -dc initrd-${kern}.img | cpio --quiet -it | grep -v '^\.$'
| sort -o New-listing

and show the differences.

echo -e '\nChanges in files in initrd image\n'

diff Orig-listing New-listing

copy the new initrd to wherever you have configure the dhcp
server to look

for it (here we assume it's /images)

mkdir -p /images

cp initrd-${kern}.img /images

echo -e '\nCompleted initrd for IB'

ls -l /images/initrd-${kern}.img

c. Run the usr/share/infinipath/gPXE/ gpxe-qib-modify-initrd script
to create the initrd.img file.

At this stage, the initrd.img file is ready and located at the location where the
DHCP server was configured to look for it.

5. Create a uniboot.php file and save it to /vault/images/uniboot.

Note: The uniboot.php generates a gPXE script that will attempt to boot from the
/boot/vmlinuz-<VERSION> kernel. If you want to boot from a different kernel, edit
uniboot.php with the appropriate kernel string in the $kver variable.

The following is an example of a uniboot.php file:

<?

header ('Content-type: text/plain');

gPXE

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
130 Doc. Number: G91902 Revision: 006US

function strleft ($s1, $s2) {

 return substr ($s1, 0, strpos ($s1, $s2));

}

function baseURL() {

 $s = empty ($_SERVER["HTTPS"]) ? '' :

 ($_SERVER["HTTPS"] == "on") ? "s" : "";

 $protocol = strleft (strtolower ($_SERVER["SERVER_PROTOCOL"]
), "/").$s;

 $port = ($_SERVER["SERVER_PORT"] == "80") ? "" :

 (":".$_SERVER["SERVER_PORT"]);

 return $protocol."://".$_SERVER['SERVER_NAME'].$port;

}

$baseurl = baseURL();

$selfurl = $baseurl.$_SERVER['REQUEST_URI'];

$dirurl = $baseurl.(dirname ($_SERVER['SCRIPT_NAME']));

$kver = "<VERSION>";

echo <<< EOF

#!gpxe

initrd /images/initrd.img

kernel /kernels/vmlinuz-${kver} bootfile=${selfurl}
ip=\${net0/ip}::\${net0/gateway}:\${net0/netmask}:\${net0/hostnam
e}:ib0:off vga=788 console=tty0 console=ttyS0,115200 debug
root=/dev/hdb1

boot

EOF;

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 131

gPXE

?>

The generated gPXE script tells gPXE to load /boot/vmlinuz-<VERSION> and
/vault/images/initrd.img files from the httpd server node and run them.
6. Copy vmlinuz-<VERSION> to /boot on the boot server.

This is the kernel that will boot.
This file can be copied from any machine that has RHEL5.3 installed.

7. Start httpd

10.3.3 Steps on the gPXE Client

1. Ensure that the HCA is listed as the first bootable device in the BIOS.
2. Reboot the test node(s) and enter the BIOS boot setup.

This is highly dependent on the BIOS for the system but you should see a menu for
boot options and a submenu for boot devices.
Select gPXE IB as the first boot device.
When you power on the system or press the reset button, the system will execute
the boot code on the HCA that will query the DHCP server for the IP address and
boot image to download.
Once the boot image is downloaded, the BIOS/HCA is finished and the boot image
is ready.

3. Verify system boots off of the kernel image on the boot server. The best way to do
this is to boot into a different kernel from the one installed on the hard drive on the
client, or to un-plug the hard drive on the client and verify that on boot up, a kernel
and file system exist.

10.4 HTTP Boot Setup
gPXE supports booting diskless machines. To enable using an IB driver, the (remote)
kernel or initrd image must include and be configured to load that driver. This can be
achieved either by compiling the HCA driver into the kernel, or by adding the device
driver module into the initrd image and loading it.
1. Make a new directory

mdir /vault/images/uniboot

2. Change directories

cd /vault/images/uniboot

3. Create a initrd.img file using the information and example in Step 4 of “Boot
Server Setup” on page 122.

4. Create a uniboot.php file using the example in Step 4 of “Boot Server Setup” on
page 122.

5. Create an images.conf file and a kernels.conf file using the examples in
Step 2 of “Boot Server Setup” on page 122 and place them in the
/etc/httpd/conf.d directory.

6. Edit /etc/dhcpd.conf file to boot the clients using HTTP

filename "http://172.26.32.9/images/uniboot/uniboot.php";

7. Restart the DHCP server

gPXE

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
132 Doc. Number: G91902 Revision: 006US

8. Start HTTP if it is not already running:

/etc/init.d/httpd start

§ §

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 133

Benchmark Programs

Appendix A Benchmark Programs

Several MPI performance measurement programs are installed by default with the MPIs
you choose to install (such as Open MPI, MVAPICH2 or MVAPICH). This appendix
describes a few of these benchmarks and how to run them. Several of these programs
are based on code from the group of Dr. Dhabaleswar K. Panda at the Network-Based
Computing Laboratory at the Ohio State University. For more information, see:
http://mvapich.cse.ohio-state.edu/

These programs allow you to measure MPI latency, bandwidth, and message rate
between two or more nodes in your cluster. The executables are installed by default
under /usr/mpi/compiler/mpi/tests/osu_benchmarks-3.1.1. The remainder
of this chapter will assume that the gcc-compiled version of Open MPI was installed in
the default location of /usr/mpi/gcc/openmpi-1.8.1-qlc and that mpi-selector is
used to choose this Open MPI version as the MPI to be used.

The following examples are intended to show only the syntax for invoking these
programs and the meaning of the output. They are not representations of actual True
Scale performance characteristics.

For additional MPI sample applications refer to Section 5 of the Intel® True Scale Fabric
Suite FastFabric Command Line Interface Reference Guide.

A.1 Benchmark 1: Measuring MPI Latency Between
Two Nodes
In the MPI community, latency for a message of given size is the time difference
between a node program’s calling MPI_Send and the time that the corresponding
MPI_Recv in the receiving node program returns. The term latency, alone without a
qualifying message size, indicates the latency for a message of size zero. This latency
represents the minimum overhead for sending messages, due to both software
overhead and delays in the electronics of the fabric. To simplify the timing
measurement, latencies are usually measured with a ping-pong method, timing a
round-trip and dividing by two.

The program osu_latency, from Ohio State University, measures the latency for a
range of messages sizes from 0bytes to 4 megabytes. It uses a ping-pong method,
where the rank zero process initiates a series of sends and the rank one process echoes
them back, using the blocking MPI send and receive calls for all operations. Half the
time interval observed by the rank zero process for each exchange is a measure of the
latency for messages of that size, as previously defined. The program uses a loop,
executing many such exchanges for each message size, to get an average. The
program defers the timing until the message has been sent and received a number of
times, to be sure that all the caches in the pipeline have been filled.

This benchmark always involves two node programs. It can be run with the command:

$ mpirun -H host1,host2 \

/usr/mpi/gcc/openmpi-1.8.1-qlc/tests/osu_benchmarks-3.1.1/osu_lat

http://mvapich.cse.ohio-state.edu/

Benchmark Programs

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
134 Doc. Number: G91902 Revision: 006US

ency

-H (or --hosts) allows the specification of the host list on the command line instead
of using a host file (with the -m or -machinefile option). Since only two hosts are
listed, this implies that two host programs will be started (as if -np 2 were specified).
The output of the program looks like:

OSU MPI Latency Test v3.1.1)

Size Latency (us)

0 1.67

1 1.68

2 1.69

4 1.68

8 1.68

16 1.93

32 1.92

64 1.92

128 1.99

256 2.12

512 2.38

1024 2.74

2048 3.52

4096 4.59

8192 6.52

16384 9.98

32768 17.65

65536 52.11

131072 84.07

262144 114.90

524288 241.97

1048576 422.41

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 135

Benchmark Programs

2097152 783.21

4194304 1596.37

The first column displays the message size in bytes. The second column displays the
average (one-way) latency in microseconds. This example shows the syntax of the
command and the format of the output, and is not meant to represent actual values
that might be obtained on any particular True Scale installation.

A.2 Benchmark 2: Measuring MPI Bandwidth Between
Two Nodes
The osu_bw benchmark measures the maximum rate that you can pump data between
two nodes. This benchmark also uses a ping-pong mechanism, similar to the
osu_latency code, except in this case, the originator of the messages pumps a
number of them (64 in the installed version) in succession using the non-blocking
MPI_I send function, while the receiving node consumes them as quickly as it can using
the non-blocking MPI_Irecv function, and then returns a zero-length acknowledgement
when all of the sent data has been received.

You can run this program by typing:

$ mpirun -H host1,host2 \

 /usr/mpi/gcc/openmpi-1.8.1-qlc/tests/osu_benchmarks-3.1.1/osu_bw

Typical output might look like:

OSU MPI Bandwidth Test v3.1.1

Size Bandwidth (MB/s)

1 2.35

2 4.69

4 9.38

8 18.80

16 34.55

32 68.89

64 137.87

128 265.80

256 480.19

512 843.70

1024 1353.48

2048 1984.11

Benchmark Programs

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
136 Doc. Number: G91902 Revision: 006US

4096 2152.61

8192 2249.00

16384 2680.75

32768 2905.83

65536 3170.05

131072 3224.15

262144 3241.35

524288 3270.21

1048576 3286.05

2097152 3292.64

4194304 3283.87

The increase in measured bandwidth with the messages’ size is because the
contribution of each packet's overhead to the measured time becomes relatively
smaller.

A.3 Benchmark 3: Messaging Rate Microbenchmarks

A.3.1 OSU Multiple Bandwidth / Message Rate test (osu_mbw_mr)
osu_mbw_mr is a multi-pair bandwidth and message rate test that evaluates the
aggregate uni-directional bandwidth and message rate between multiple pairs of
processes. Each of the sending processes sends a fixed number of messages (the
window size) back-to-back to the paired receiving process before waiting for a reply
from the receiver. This process is repeated for several iterations. The objective of this
benchmark is to determine the achieved bandwidth and message rate from one node to
another node with a configurable number of processes running on each node. You can
run this program as follows:

$ mpirun -H host1,host2 -npernode 12 \

/usr/mpi/gcc/openmpi-1.8.1-qlc/tests/osu_benchmarks-3.1.1/osu_mbw
_mr

This was run on 12-core compute nodes, so we used Open MPI's -npernode 12 option
to place 12 MPI processes on each node (for a total of 24) to maximize message rate.
Note that the output below indicates that there are 12 pairs of communicating
processes.

OSU MPI Multiple Bandwidth / Message Rate Test v3.1.1

[pairs: 12] [window size: 64]

Size MB/s Messages/s

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 137

Benchmark Programs

1 22.77 22768062.43

2 44.90 22449128.66

4 91.75 22938300.02

8 179.23 22403849.44

16 279.91 17494300.07

32 554.16 17317485.47

64 1119.88 17498101.32

128 1740.54 13597979.96

256 2110.22 8243066.36

512 2353.17 4596038.46

1024 2495.88 2437386.38

2048 2573.99 1256833.08

4096 2567.88 626923.21

8192 2757.54 336613.42

16384 3283.94 200435.90

32768 3291.54 100449.84

65536 3298.20 50326.50

131072 3305.77 25221.05

262144 3310.39 12628.14

524288 3310.83 6314.90

1048576 3311.11 3157.72

2097152 3323.50 1584.77

4194304 3302.35 787.34

A.3.2 An Enhanced Multiple Bandwidth / Message Rate test
(mpi_multibw)
mpi_multibw is a version of osu_mbw_mr which has been enhanced by Intel to
optionally run in a bidirectional mode and to scale better on the larger multi-core nodes
available today This benchmark is a modified form of the OSU Network-Based
Computing Lab’s osu_mbw_mr benchmark (as shown in the previous example). It has
been enhanced with the following additional functionality:

Benchmark Programs

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
138 Doc. Number: G91902 Revision: 006US

• N/2 is dynamically calculated at the end of the run.
• You can use the -b option to get a bidirectional message rate and bandwidth

results.
• Scalability has been improved for larger core-count nodes.

The benchmark has been updated with code to dynamically determine what processes
are on which host. Thefollowing is an example output when running mpi_multibw:

$ mpirun -H host1,host2 -npernode 12 \

 /usr/mpi/gcc/openmpi-1.8.1-qlc/tests/intel/mpi_multibw

PathScale Modified OSU MPI Bandwidth Test

(OSU Version 2.2, PathScale $Revision: 1.1.2.1 $)

Running on 12 procs per node (uni-directional traffic for each
process pair)

Size Aggregate Bandwidth (MB/s) Messages/s

1 24.992623 24992622.996615

2 50.015847 25007923.312888

4 100.075479 25018869.818990

8 200.115037 25014379.610716

16 284.475601 17779725.040265

32 568.950239 17779694.953511

64 1137.899392 17779677.998115

128 1758.183987 13735812.394705

256 2116.159352 8266247.468294

512 2355.027827 4599663.724469

1024 2496.960650 2438438.134886

2048 2574.260975 1256963.366877

4096 2567.861960 626919.423819

8192 2746.514440 335267.875961

16384 3284.264487 200455.596122

32768 3292.007839 100464.106405

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 139

Benchmark Programs

65536 3299.800622 50350.961641

131072 3306.998105 25230.393259

262144 3309.840069 12626.037860

524288 3323.339300 6338.766671

1048576 3323.068802 3169.125368

2097152 3307.077899 1576.937627

4194304 3300.327382 786.859365

Searching for N/2 bandwidth. Maximum Bandwidth of 3323.339300
MB/s...

Found N/2 bandwidth of 1662.009095 MB/s at size 121 bytes

Note the improved message rate at small message sizes of ~25 million compared to
the rate of 22.8 million measured with osu_mbw_mr. Also note that it only takes a
message of size 121 bytes to generate half of the peak uni-directional bandwidth.

The following is an example output when running with the bidirectional option (-b):

$ mpirun -H host1,host2 -np 24 \

 /usr/mpi/gcc/openmpi-1.8.1-qlc/tests/intel/mpi_multibw -b

PathScale Modified OSU MPI Bandwidth Test

(OSU Version 2.2, PathScale $Revision: 1.1.2.1 $)

Running on 12 procs per node (bi-directional traffic for each
process pair)

Size Aggregate Bandwidth (MB/s) Messages/s

1 34.572819 34572819.324348

2 68.984920 34492459.942272

4 137.870850 34467712.532016

8 274.914966 34364370.730843

16 438.182185 27386386.585309

32 871.077525 27221172.671073

64 1743.576039 27243375.616870

128 3046.774606 23802926.607917

256 3968.178042 15500695.477711

Benchmark Programs

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
140 Doc. Number: G91902 Revision: 006US

512 4558.456908 8903236.148204

1024 4876.777738 4762478.259397

2048 5050.255245 2465944.943769

4096 5063.142612 1236118.801851

8192 5234.475557 638974.066993

16384 6255.483598 381804.418801

32768 6236.354159 190318.425252

65536 6288.370045 95952.912066

131072 6330.494823 48297.842586

262144 6351.690777 24229.777437

524288 6353.021307 12117.426504

1048576 6353.890433 6059.542115

2097152 6353.951840 3029.800339

4194304 6354.671923 1515.071851

Searching for N/2 bandwidth. Maximum Bandwidth of 6354.671923
MB/s...

Found N/2 bandwidth of 3184.322181 MB/s at size 170 bytes

The higher peak bi-directional messaging rate of 34.6 million messages per second at
the 1 byte size, compared to 25 million messages/sec. when run unidirectionally.

§ §

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 141

Integration with a Batch Queuing System

Appendix B Integration with a Batch Queuing System

Most cluster systems use some kind of batch queuing system as an orderly way to
provide users with access to the resources they need to meet their job’s performance
requirements. One task of the cluster administrator is to allow users to submit MPI jobs
through these batch queuing systems.

For Open MPI, there are resources at openmpi.org that document how to use the MPI
with three batch queuing systems. The links to the Frequently Asked Questions (FAQs)
for each of the three batch queuing system are as follows:

• Torque / PBS Pro: http://www.open-mpi.org/faq/?category=tm
• SLURM: http://www.open-mpi.org/faq/?category=slurm

• Bproc: http://www.open-mpi.org/faq/?category=bproc

In this Appendix there are two sections which deal with process and file clean-up after
batch MPI/PSM jobs have completed: “Clean Termination of MPI Processes” and
“Clean-up PSM Shared Memory Files”.

B.1 Clean Termination of MPI Processes
The InfiniPath software normally ensures clean termination of all MPI programs when a
job ends, but in some rare circumstances an MPI process may remain alive, and
potentially interfere with future MPI jobs. To avoid this problem, run a script before and
after each batch job that kills all unwanted processes. Intel does not provide such a
script, but it is useful to know how to find out which processes on a node are using the
Intel interconnect. The easiest way to do this is with the fuser command, which is
normally installed in /sbin.

Run these commands as a root user to ensure that all processes are reported.

/sbin/fuser -v /dev/ipath

/dev/ipath: 22648m 22651m

In this example, processes 22648 and 22651 are using the Intel interconnect. It is also
possible to use this command (as a root user):

lsof /dev/ipath

This command displays a list of processes using InfiniPath. Additionally, to get all
processes, including stats programs, ipath_sma, diags, and others, run the program in
the following manner:

/sbin/fuser -v /dev/ipath*

lsof can also take the same form:

lsof /dev/ipath*

http://www.openmpi.org
http://www.open-mpi.org/faq/?category=tm
http://www.open-mpi.org/faq/?category=slurm
http://www.open-mpi.org/faq/?category=bproc

Integration with a Batch Queuing System

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
142 Doc. Number: G91902 Revision: 006US

The following command terminates all processes using the Intel interconnect:

/sbin/fuser -k /dev/ipath

For more information, see the man pages for fuser(1) and lsof(8).

Note: Hard and explicit program termination, such as kill -9 on the mpirun Process ID
(PID), may result in Open MPI being unable to guarantee that the /dev/shm shared
memory file is properly removed. As many stale files accumulate on each node, an
error message can appear at startup:

node023:6.Error creating shared memory object in shm_open(/dev/shm
may have stale shm files that need to be removed):

If this occurs, refer to Clean-up PSM Shared Memory Files for information.

B.2 Clean-up PSM Shared Memory Files
In some cases if a PSM job terminates abnormally, such as with a segmentation fault,
there could be POSIX shared memory files leftover in the /dev/shm directory. The file is
owned by the user and they have permission (-rwx------)to remove the file either
by the user or by root.

PSM relies on the MPI implementation to cleanup after abnormal job termination. In
cases where this does not occur there may be leftover shared memory files. To clean up
the system, create, save, and run the following PSM SHM cleanup script as root on each
node. Either logon to the node, or run remote using pdsh/ssh.

#!/bin/sh

files=`/bin/ls /dev/shm/psm_shm.* 2> /dev/null`;

for file in $files;

do

/sbin/fuser $file > /dev/null 2>&1;

if [$? -ne 0];

then

/bin/rm $file > /dev/null 2>&1;

fi;

done;

When the system is idle, the administrators can remove all of the shared memory files,
including stale files, by using the following command:

rm -rf /dev/shm/psm_shm.*

§ §

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 143

Troubleshooting

Appendix C Troubleshooting

This appendix describes some of the tools you can use to diagnose and fix problems.
The following topics are discussed:

• “Using LEDs to Check the State of the HCA”
• “BIOS Settings”
• “Kernel and Initialization Issues”
• “OpenFabrics and InfiniPath Issues”
• “System Administration Troubleshooting”
• “Performance Issues”
• “Open MPI Troubleshooting”
• “HPL Residual Error Failure”

Troubleshooting information for hardware installation is found in the Intel® True Scale
Fabric Adapter Hardware Installation Guide and software installation is found in the
Intel® True Scale Fabric Software Installation Guide.

C.1 Using LEDs to Check the State of the HCA
The LEDs function as link and data indicators once the InfiniPath software has been
installed, the driver has been loaded, and the fabric is being actively managed by a
subnet manager.

Table 10-1 describes the LED states. The green LED indicates the physical link signal;
the amber LED indicates the link. The green LED normally illuminates first. The normal
state is Green On, Amber On. The QLE7240 and QLE7280 have an additional state, as
shown in Table 10-1.

Table 10-1. LED Link and Data Indicators

LED States Indication

Green OFF
Amber OFF

The switch is not powered up. The software is neither installed nor
started. Loss of signal.
Verify that the software is installed and configured with
ipath_control -i. If correct, check both cable connectors.

Green ON
Amber OFF

Signal detected and the physical link is up. Ready to talk to SM to bring
the link fully up.
If this state persists, the SM may be missing or the link may not be
configured.
Use ipath_control -i to verify the software state. If all HCAs
are in this state, then the SM is not running. Check the SM
configuration, or install and run opensmd.

Troubleshooting

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
144 Doc. Number: G91902 Revision: 006US

C.2 BIOS Settings
This section covers issues related to BIOS settings.The most important setting is
Advanced Configuration and Power Interface (ACPI). This setting must be enabled. If
ACPI has been disabled, it may result in initialization problems, as described in
“InfiniPath Interrupts Not Working” on page 144.

You can check and adjust the BIOS settings using the BIOS Setup utility. Check the
hardware documentation that came with your system for more information.

C.3 Kernel and Initialization Issues
Issues that may prevent the system from coming up properly are described in the
following sections.

C.3.1 Driver Load Fails Due to Unsupported Kernel
If you try to load the InfiniPath driver on a kernel that InfiniPath software does not
support, the load fails. Error messages similar to this display:

modprobe: error inserting
’/lib/modules/2.6.3-1.1659-smp/updates/kernel/drivers/infiniband/
hw/qib/ib_qib.ko’: -1 Invalid module format

To correct this problem, install one of the appropriate supported Linux kernel versions,
then reload the driver.

C.3.2 Rebuild or Reinstall Drivers if Different Kernel Installed
If you upgrade the kernel, then you must reboot and then rebuild or reinstall the
InfiniPath kernel modules (drivers). Intel recommends using the IFS Software
Installation TUI to preform this rebuild or reinstall. Refer to the Intel® True Scale Fabric
Software Installation Guide for more information.

C.3.3 InfiniPath Interrupts Not Working
The InfiniPath driver cannot configure the InfiniPath link to a usable state unless
interrupts are working. Check for this problem with the command:

$ grep ib_qib /proc/interrupts

Green ON
Amber ON

The link is configured, properly connected, and ready. Signal detected.
Ready to talk to an SM to bring the link fully up.
The link is configured. Properly connected and ready to receive data
and link packets.

Green BLINKING (quickly)
Amber ON

Indicates traffic

Green BLINKING†

Amber BLINKING

Locates the HCA
This feature is controlled by ipath_control -b [On |
Off]

†. This feature is available only on the QLE7340, QLE7342, QLE7240 and QLE7280 adapters

Table 10-1. LED Link and Data Indicators (Continued)

LED States Indication

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 145

Troubleshooting

Normal output is similar to this:

CPU0 CPU1

185: 364263 0 IO-APIC-level ib_qib

Note: The output you see may vary depending on board type, distribution, or update level.

If there is no output at all, the driver initialization failed. For more information on driver
problems, see “Driver Load Fails Due to Unsupported Kernel” on page 144 or “InfiniPath
ib_qib Initialization Failure” on page 147.

If the output is similar to one of these lines, then interrupts are not being delivered to
the driver.

66: 0 0 PCI-MSI ib_qib

185:0 0 IO-APIC-level ib_qib

The following message appears when driver has initialized successfully, but no
interrupts are seen within 5 seconds.

ib_qib 0000:82:00.0: No interrupts detected.

A zero count in all CPU columns means that no InfiniPath interrupts have been
delivered to the processor.

The possible causes of this problem are:
• Booting the Linux kernel with ACPI disabled on either the boot command line or in

the BIOS configuration
• Other infinipath initialization failures

To check if the kernel was booted with the noacpi or pci=noacpi option, use this
command:

$ grep -i acpi /proc/cmdline

If output is displayed, fix the kernel boot command line so that ACPI is enabled. This
command line can be set in various ways, depending on your distribution. If no output
is displayed, check that ACPI is enabled in your BIOS settings.

To track down other initialization failures, see “InfiniPath ib_qib Initialization Failure”
on page 147.

The program ipath_checkout can also help flag these kinds of problems. See
“ipath_checkout” on page 184 for more information.

C.3.4 OpenFabrics Load Errors if ib_qib Driver Load Fails
When the ib_qib driver fails to load, the other OpenFabrics drivers/modules will load
and be shown by lsmod, but commands like ibstatus, ibv_devinfo, and
ipath_control -i will fail as follows:

ibstatus

Fatal error: device ’*’: sys files not found
(/sys/class/infiniband/*/ports)

Troubleshooting

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
146 Doc. Number: G91902 Revision: 006US

ibv_devinfo

libibverbs: Fatal: couldn’t read uverbs ABI version.

No IB devices found

ipath_control -i

InfiniPath driver not loaded ?

No InfiniPath info available

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 147

Troubleshooting

C.3.5 InfiniPath ib_qib Initialization Failure
There may be cases where ib_qib was not properly initialized. Symptoms of this may
show up in error messages from an MPI job or another program. Here is a sample
command and error message:

$ mpirun -np 2 -m ~/tmp/mbu13 osu_latency

<nodename>:ipath_userinit: assign_port command failed: Network is
down

<nodename>:can’t open /dev/ipath, network down

This will be followed by messages of this type after 60 seconds:

MPIRUN<node_where_started>: 1 rank has not yet exited 60 seconds
after rank 0 (node <nodename>) exited without reaching
MPI_Finalize().

MPIRUN<node_where_started>:Waiting at most another 60 seconds for
the remaining ranks to do a clean shutdown before terminating 1
node processes.

If this error appears, check to see if the InfiniPath driver is loaded by typing:

$ lsmod | grep ib_qib

If no output is displayed, the driver did not load for some reason. In this case, try the
following commands (as root):

modprobe -v ib_qib

lsmod | grep ib_qib

dmesg | grep -i ib_qib | tail -25

The output will indicate whether the driver has loaded. Printing out messages using
dmesg may help to locate any problems with ib_qib.

If the driver loaded, but MPI or other programs are not working, check to see if
problems were detected during the driver and Intel hardware initialization with the
command:

$ dmesg | grep -i ib_qib

This command may generate more than one screen of output.

Also, check the link status with the commands:

$ cat /sys/class/infiniband/qib0/device/status_str

These commands are normally executed by the ipathbug-helper script, but running
them separately may help locate the problem.

See also “status_str” on page 191 and “ipath_checkout” on page 184.

Troubleshooting

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
148 Doc. Number: G91902 Revision: 006US

C.3.6 MPI Job Failures Due to Initialization Problems
If one or more nodes do not have the interconnect in a usable state, messages similar
to the following appear when the MPI program is started:

userinit: userinit ioctl failed: Network is down [1]: device init
failed

userinit: userinit ioctl failed: Fatal Error in keypriv.c(520):
device init failed

These messages may indicate that a cable is not connected, the switch is down, SM is
not running, or that a hardware error occurred.

C.4 OpenFabrics and InfiniPath Issues
The following sections cover issues related to OpenFabrics (including Subnet Managers)
and InfiniPath.

C.4.1 Stop Infinipath Services Before Stopping/Restarting
InfiniPath
The following Infinipath services must be stopped before stopping/starting/restarting
InfiniPath:

• FM
• OpenSM
• SRP

Here is a sample command and the corresponding error messages:

/etc/init.d/openibd stop

Unloading infiniband modules: sdp cm umad uverbs ipoib sa ipath
mad coreFATAL:Module ib_umad is in use.

Unloading infinipath modules FATAL: Module ib_qib is in use.

[FAILED]

C.4.2 Manual Shutdown or Restart May Hang if NFS in Use
If you are using NFS over IPoIB and use the manual /etc/init.d/openibd stop
(or restart) command, the shutdown process may silently hang on the fuser
command contained within the script. This is because fuser cannot traverse down the
tree from the mount point once the mount point has disappeared. To remedy this
problem, the fuser process itself needs to be killed. Run the following command either
as a root user or as the user who is running the fuser process:

kill -9 fuser

The shutdown will continue.

This problem is not seen if the system is rebooted or if the filesystem has already been
unmounted before stopping infinipath.

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 149

Troubleshooting

C.4.3 Load and Configure IPoIB Before Loading SDP
SDP generates Connection Refused errors if it is loaded before IPoIB has been loaded
and configured. To solve the problem, load and configure IPoIB first.

C.4.4 Set $IBPATH for OpenFabrics Scripts
The environment variable $IBPATH must be set to /usr/bin. If this has not been set,
or if you have it set to a location other than the installed location, you may see error
messages similar to the following when running some OpenFabrics scripts:

/usr/bin/ibhosts: line 30: /usr/local/bin/ibnetdiscover: No such
file or directory

For the OpenFabrics commands supplied with this InfiniPath release, set the variable (if
it has not been set already) to /usr/bin, as follows:

$ export IBPATH=/usr/bin

C.4.5 SDP Module Not Loading
If the settings for debug level and the zero copy threshold from InfiniPath release 2.0
are present in the release 2.2 /etc/modprobe.conf file (RHEL) or
/etc/modprobe.conf.local (SLES) file, the SDP module may not load. To solve the
problem, remove the following line.

options ib_sdp sdp_debug_level=4
sdp_zcopy_thrsh_src_default=10000000

C.4.6 ibsrpdm Command Hangs when Two HCAs are Installed
but Only Unit 1 is Connected to the Switch
If multiple HCAs (unit 0 and unit 1) are installed and only unit 1 is connected to the
switch, the ibsrpdm command (to set up an SRP target) can hang. If unit 0 is
connected and unit 1 is disconnected, the problem does not occur.

When only unit 1 is connected to the switch, use the -d option with ibsrpdm. Then,
using the output from the ibsrpdm command, echo the new target information into
/sys/class/infiniband_srp/srp-ipath1-1/add_target.

For example:

ibsrpdm -d /dev/infiniband/umad1 -c

echo \
id_ext=21000001ff040bf6,ioc_guid=21000001ff040bf6,dgid=fe80000000
00000021000001ff040bf6,pkey=ffff,service_id=f60b04ff01000021 >
/sys/class/infiniband_srp/srp-ipath0-1/add_target

C.4.7 Outdated ipath_ether Configuration Setup Generates Error
Ethernet emulation (ipath_ether) has been removed in this release, and, as a result,
an error may be seen if the user still has an alias set previously by modprobe.conf
(for example, alias eth2 ipath_ether).

Troubleshooting

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
150 Doc. Number: G91902 Revision: 006US

When ifconfig or ifup are run, the error will look similar to the following (assuming
ipath_ether was used for eth2):

eth2: error fetching interface information: Device not found

To prevent the error message, remove the following files (assuming ipath_ether was
used for eth2):

/etc/sysconfig/network-scripts/ifcfg-eth2 (for RHEL)

/etc/sysconfig/network/ifcfg-eth2 (for SLES)

Intel recommends using the IP over IB protocol (IPoIB-CM), included in the standard
OpenFabrics software releases, as a replacement for ipath_ether.

C.5 System Administration Troubleshooting
The following sections provide details on locating problems related to system
administration.

C.5.1 Broken Intermediate Link
Sometimes message traffic passes through the fabric while other traffic appears to be
blocked. In this case, MPI jobs fail to run.

In large cluster configurations, switches may be attached to other switches to supply
the necessary inter-node connectivity. Problems with these inter-switch (or
intermediate) links are sometimes more difficult to diagnose than failure of the final
link between a switch and a node. The failure of an intermediate link may allow some
traffic to pass through the fabric while other traffic is blocked or degraded.

If you notice this behavior in a multi-layer fabric, check that all switch cable
connections are correct. Statistics for managed switches are available on a per-port
basis, and may help with debugging. See your switch vendor for more information.

Intel recommends using FastFabric to help diagnose this problem. If FastFabric is not
installed in the fabric, there are two diagnostic tools, ibhosts and ibtracert, that
may also be helpful. The tool ibhosts lists all the IB nodes that the subnet manager
recognizes. To check the IB path between two nodes, use the ibtracert command.

C.6 Performance Issues
The following sections discuss known performance issues.

C.6.1 Large Message Receive Side Bandwidth Varies with
Socket Affinity on Opteron Systems
On Opteron systems, when using the QLE7240 or QLE7280 in DDR mode, there is a
receive side bandwidth bottleneck for CPUs that are not adjacent to the PCI Express
root complex. This may cause performance to vary. The bottleneck is most obvious
when using SendDMA with large messages on the farthest sockets. The best case for
SendDMA is when both sender and receiver are on the closest sockets. Overall
performance for PIO (and smaller messages) is better than with SendDMA.

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 151

Troubleshooting

C.6.2 Erratic Performance
Sometimes erratic performance is seen on applications that use interrupts. An example
is inconsistent SDP latency when running a program such as netperf. This may be
seen on AMD-based systems using the QLE7240 or QLE7280 adapters. If this happens,
check to see if the program irqbalance is running. This program is a Linux daemon
that distributes interrupts across processors. However, it may interfere with prior
interrupt request (IRQ) affinity settings, introducing timing anomalies. After stopping
this process (as a root user), bind IRQ to a CPU for more consistent performance. First,
stop irqbalance:

/sbin/chkconfig irqbalance off

/etc/init.d/irqbalance stop

Next, find the IRQ number and bind it to a CPU. The IRQ number can be found in one of
two ways, depending on the system used. Both methods are described in the following
paragraphs.

Note: Take care when cutting and pasting commands from PDF documents, as quotes are
special characters and may not be translated correctly.

C.6.2.1 Method 1

Check to see if the IRQ number is found in /proc/irq/xxx, where xxx is the IRQ
number in /sys/class/infiniband/ipath*/device/irq. Do this as a root user.
For example:

my_irq=‘cat /sys/class/infiniband/qib0/device/irq‘

ls /proc/irq

If $my_irq can be found under /proc/irq/, then type:

echo 01 > /proc/irq/$my_irq/smp_affinityMethod 2

If command from Method 1, ls /proc/irq, cannot find $my_irq, then use the
following commands instead:

my_irq=‘cat /proc/interrupts|grep ib_qib|awk \

’{print $1}’|sed -e ’s/://’‘

echo 01 > /proc/irq/$my_irq/smp_affinity

This method is not the first choice because, on some systems, there may be two rows
of ib_qib output, and you will not know which one of the two numbers to choose.
However, if you cannot find $my_irq listed under /proc/irq (Method 1), this type of
system most likely has only one line for ib_qib listed in /proc/interrupts, so you
can use Method 2.

Here is an example:

cat /sys/class/infiniband/ipath*/device/irq

98

ls /proc/irq

Troubleshooting

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
152 Doc. Number: G91902 Revision: 006US

0 10 11 13 15 233 4 50 7 8 90

1 106 12 14 2 3 5 58 66 74 9

(Note that you cannot find 98.)

cat /proc/interrupts|grep ib_qib|awk \

’{print $1}’|sed -e ’s/://’

106

echo 01 > /proc/irq/106/smp_affinity

Using the echo command immediately changes the processor affinity of an IRQ.

Note: The contents of the smp_affinity file may not reflect the expected values, even
though the affinity change has taken place.

Note: If the driver is reloaded, the affinity assignment will revert to the default, so you will
need to reset it to the desired value.

You can look at the stats in /proc/interrupts while the adapter is active to observe
which CPU is fielding ib_qib interrupts.

C.6.2.2 Immediately change the processor affinity of an IRQ

To immediately change the processor affinity of an IRQ, execute a command similar to
the following, as a root user:

echo 01 > /proc/irq/$my_irq/smp_affinity

The contents of the smp_affinity file may not reflect the expected values, even
though the affinity change has taken place. If the driver is reloaded, the affinity
assignment will revert to the default, so you will need to reset it to the desired value.
Look at the stats in /proc/interrupts while the adapter is active to see which CPU
is fielding ib_qib interrupts.

C.6.3 Performance Warning if ib_qib Shares Interrupts with eth0
When ib_qib shares interrupts with eth0, performance may be affected the OFED
ULPs, such as IPoIB. A warning message appears in syslog, and also on the console or
tty session where /etc/init.d/openibd start is run (if messages are set up to
be displayed). Messages are in this form:

Nov 5 14:25:43 <nodename> infinipath: Shared interrupt will
affect performance: vector 169: devices eth0, ib_qib

Check /proc/interrupts: "169" is in the first column, and "devices" are shown in
the last column.

You can also contact your system vendor to see if the BIOS settings can be changed to
avoid the problem.

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 153

Troubleshooting

C.7 Open MPI Troubleshooting
Problems specific to compiling and running Open MPI programs are described in the
following sections.

C.7.1 Invalid Configuration Warning
Open MPI warns about a invalid configuration every time it is run with the following
warning:

WARNING: There are more than one active ports on host 'st2107',
but the default subnet GID prefix was detected on more than one of
these ports. If these ports are connected to different physical
IB networks, this configuration will fail in Open MPI. This
version of Open MPI requires that every physically separate IB
subnet that is used between connected MPI processes must have
different subnet ID values.

When connecting 2 ports of an HCA to different fabrics, it is a mandatory requirement
that the SubnetPrefix for those two fabrics be different and non-default (for example,
not FE80000000000000) based on the FM configuration file. The config_generate
tool for the FM will help generate such files. Refer to the Intel® True Scale Fabric Suite
Fabric Manager User Guide for more information about the config_generate tool.

C.8 HPL Residual Error Failure
High Performance Linpack (HPL) running on clusters with some architectures may
sometimes result in a residual error, as shown in Figure 10-1.

Figure 10-1. Screenshot of Linpack test results showing residual failure

==

T/V N NB P Q Time Gflops

‐‐

WR01R2R1 235872 92 8 12 13121.97 6.667e+02

‐‐

||Ax‐b||_oo/(eps*(||A||_oo*||x||_oo+||b||_oo)*N)= 868173.3686654 FAILED

||Ax‐b||_oo = 12.869856

||A||_oo = 59307.474313

||A||_1 = 59260.590185

||x||_oo = 9.544887

||x||_1 = 381913.338946

||b||_oo = 0.499997

==

Finished 1 tests with the following results:

 0 tests completed and passed residual checks,

 1 tests completed and failed residual checks,

 0 tests skipped because of illegal input values.

‐‐

Troubleshooting

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
154 Doc. Number: G91902 Revision: 006US

To avoid the residual error, edit the Kcopy configuration as noted below and copy it to
each compute node.

Note: The kcopy configuration file has various paths and names in the different Linux
distributions as shown in the following list:

• For SLES or RHEL use file /etc/modprobe.d/kcopy.conf

Change the kcopy configuration file as follows:
1. Open the configuration file noted above in edit mode.
2. Add the following option:

options kcopy cache_coherent=1

3. Save the configuration file.
4. Copy the kcopy configuration file to every compute node.
5. Reboot or reload the kcopy module on every compute node.

§ §

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 155

Write Combining

Appendix D Write Combining

D.1 Introduction
Write Combining improves write bandwidth to the Intel True Scale driver by writing
multiple words in a single bus transaction (typically 64 bytes). Write combining applies
only to x86_64 systems.

The x86 Page Attribute Table (PAT) mechanism allocates Write Combining (WC)
mappings for the PIO buffers, and is the default mechanism for WC.

If PAT is unavailable or PAT initialization fails, the software will generate a message in
the log and fall back to the Memory Type Range Registers (MTRR) mechanism. If write
combining is not working properly, lower than expected bandwidth may occur.

The following sections provide instructions for enabling and disabling WC using PAT and
MTRR, and for verifying that write combining is working.

D.2 PAT and Write Combining
The wc_pat parameter is set in /etc/modprobe.conf (on Red Hat systems) or
/etc/modprobe.conf.local (on SLES systems) to:

• 0) Disable PAT and use MTRR.
• 1) Configure WC by programming the PAT at the memory page level instead of the

physical memory ranges.
• 2) Configure WC by programming the PAT at the memory page level and

overwriting the operating system PAT configuration to enable WC uniformly across
CPUs that have it disabled. This is the default setting.

The default wc_pat parameter is:

option ib_qib wc_pat=2

If PAT is unavailable or PAT initialization fails, the code generates a message in the log
and falls back to the MTRR mechanism. To use MTRR, disable PAT by setting the
wc_pat parameter to 0 (as a root user):

option ib_qib wc_pat=0

Revert to using MTRR-only behavior by following one of the two suggestions in “MTRR
Mapping and Write Combining”.

The driver must be restarted after the changes have been made.
.

Note: There will not be a WC entry in /proc/mtrr when using PAT.

Write Combining

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
156 Doc. Number: G91902 Revision: 006US

D.3 MTRR Mapping and Write Combining
Two suggestions for properly enabling MTRR mapping for write combining are described
in the following sections.

See “Performance Issues” on page 150 for more details on a related performance
issue.

D.3.1 Edit BIOS Settings to Fix MTRR Issues
You can edit the BIOS setting for MTRR mapping. The BIOS setting looks similar to:

MTRR Mapping [Discrete]

For systems with very large amounts of memory (32GB or more), it may also be
necessary to adjust the BIOS setting for the PCI hole granularity to 2GB. This setting
allows the memory to be mapped with fewer MTRRs, so that there will be one or more
unused MTRRs for the InfiniPath driver.

Some BIOS’ do not have the MTRR mapping option. It may have a different name,
depending on the chipset, vendor, BIOS, or other factors. For example, it is sometimes
referred to as 32 bit memory hole. This setting must be enabled.

If there is no setting for MTRR mapping or 32 bit memory hole, and you have problems
with degraded performance, contact your system or motherboard vendor and ask how
to enable write combining.

D.3.2 Use the ipath_mtrr Script to Fix MTRR Issues
Intel also provides a script, ipath_mtrr, which sets the MTRR registers, enabling
maximum performance from the InfiniPath driver. This Python script is available as a
part of the InfiniPath software download, and is contained in the infinipath* RPM. It
is installed in /bin.

To diagnose the machine, run it with no arguments (as a root user):

ipath_mtrr

The test results will list any problems, if they exist, and provide suggestions on what to
do.

To fix the MTRR registers, use:

ipath_mtrr -w

Restart the driver after fixing the registers.

This script needs to be run after each system reboot. It can be set to run automatically
upon restart by adding this line in /etc/sysconfig/infinipath:

IPATH_MTRR_ACTIVE=1

See the ipath_mtrr(8) man page for more information on other options.

D.4 Verify Write Combining is Working
To see if write combining is working correctly and to check the bandwidth, run the
following command:

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 157

Write Combining

$ ipath_pkt_test -B

With write combining enabled, the QLE7140 and QLE7240 report in the range
of 1150–1500 MBps. The QLE7280 reports in the range of 1950–3000 MBps.

You can also use ipath_checkout (use option 5) to check bandwidth.

Increased latency and low bandwidth may indicate a problem. The interconnect could
be operating in a degraded performance mode with latency increasing to several
microseconds, and bandwidth decreasing to as little as 200 MBps.

Upon driver startup, you may see these errors:

ib_qib 0000:04:01.0: infinqib0: Performance problem: bandwidth to
PIO buffers is only 273 MiB/sec
.
.
.

If you do not see any of these messages on your console, but suspect this problem,
check the /var/log/messages file. Some systems suppress driver load messages but
still output them to the log file.

§ §

Write Combining

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
158 Doc. Number: G91902 Revision: 006US

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 159

Commands and Files

Appendix E Commands and Files

The most useful commands and files for debugging, and common tasks, are presented
in the following sections. Many of these commands and files have been discussed
elsewhere in the documentation. This information is summarized and repeated here for
your convenience.

E.1 Check Cluster Homogeneity with ipath_checkout
Many problems can be attributed to the lack of homogeneity in the cluster
environment. Use the following items as a checklist for verifying homogeneity. A
difference in any one of these items in your cluster may cause problems:

• Kernels
• Distributions
• Versions of the Intel boards
• Runtime and build environments
• .o files from different compilers
• Libraries
• Processor/link speeds
• PIO bandwidth
• MTUs

With the exception of finding any differences between the runtime and build
environments, ipath_checkout will pick up information on all the above items. Other
programs useful for verifying homogeneity are listed in Table 10-2, “Useful Programs”
on page 160. More details on ipath_checkout are in “ipath_checkout” on
page 184.

E.2 Restarting InfiniPath
When the driver status appears abnormal on any node, you can try restarting (as a root
user). Type:

/etc/init.d/openibd restart

These two commands perform the same function as restart:

/etc/init.d/openibd stop

/etc/init.d/openibd start

Also check the /var/log/messages file for any abnormal activity.

Commands and Files

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
160 Doc. Number: G91902 Revision: 006US

E.3 Summary and Descriptions of Commands
Commands are summarized in Table 10-2, “Useful Programs” on page 160. Names in
blue text are linked to a corresponding section that provides further details. Check the
man pages for more information on the programs.

Table 10-2. Useful Programs

Program Name Function

chkconfig Checks the configuration state and enables/disables services, including
drivers. Can be useful for checking homogeneity.

dmesg Prints out bootup messages. Useful for checking for initialization problems.

iba_opp_query
Retrieves path records from the Distributed SA and is somewhat similar to
iba_saquery. It is intended for testing the Distributed SA (dist_sa) and for
verifying connectivity between nodes in the fabric.

iba_hca_rev
Scans the system and reports hardware and firmware information about all
the HCAs in the system.

iba_manage_switch
Allows management of externally managed switches (including 12200,
12200-18, and HP BLc Intel 4X QDR) without the IFS software.

iba_packet_capture Enables packet capture and subsequent dump to file

ibhosts†

†. These programs are contained in the OpenFabrics openib-diags RPM.

Checks that all hosts in the fabric are up and visible to the subnet manager
and to each other

ibstatus† Checks the status of IB devices when OpenFabrics is installed

ibtracert† Determines the path that IB packets travel between two nodes

ibv_devinfo† Lists information about IB devices in use. Use when OpenFabrics is enabled.

ident††

††. These programs are contained within the rcs RPM for your distribution.

Identifies RCS keyword strings in files. Can check for dates, release versions,
and other identifying information.

ipath_checkout†††

†††. These programs are contained in the Open mpi-frontend RPM.

A bash shell script that performs sanity testing on a cluster using Intel
hardware and InfiniPath software. When the program runs without errors, the
node is properly configured.

ipath_control†††
A shell script that manipulates various parameters for the InfiniPath driver.
This script gathers the same information contained in boardversion,
status_str, and version.

ipath_mtrr††† A Python script that sets the MTRR registers.

ipath_pkt_test††† Tests the IB link and bandwidth between two Intel HCAs, or, using an IB
loopback connector, tests within a single Intel HCA

ipathstats††† Displays driver statistics and hardware counters, including performance and
“error” (including status) counters

lsmod
Shows status of modules in the Linux kernel. Use to check whether drivers
are loaded.

modprobe Adds or removes modules from the Linux kernel.

mpirun††† A front end program that starts an MPI job on an InfiniPath cluster. Use to
check the origin of the drivers.

mpi_stress
An MPI stress test program designed to load up an MPI interconnect with
point-to-point messages while optionally checking for data integrity.

ps Displays information on current active processes. Use to check whether all
necessary processes have been started.

rpm
Package manager to install, query, verify, update, or erase software
packages. Use to check the contents of a package.

strings†††† Prints the strings of printable characters in a file. Useful for determining
contents of non-text files such as date and version.

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 161

Commands and Files

E.3.1 dmesg

dmesg prints out bootup messages. It is useful for checking for initialization problems.
You can check to see if problems were detected during the driver and Intel hardware
initialization with the command:

$ dmesg|egrep -i infinipath|qib

This command may generate more than one screen of output.

E.3.2 iba_opp_query

This command retrieves path records from the Distributed SA and is somewhat similar
to iba_saquery. It is intended for testing the Distributed SA (intel_sa) and for
verifying connectivity between nodes in the fabric. For information on configuring and
using the Distributed SA, refer to “Intel Distributed Subnet Administration” on page 27.

iba_opp_query does not access the SM when doing queries, it only accesses the local
Distributed SA database. For that reason, the kinds of queries that can be done are
much more limited than with iba_saquery. In particular, it can only find paths that
start on the machine where the command is run. (In other words, the source LID or
source GID must be on the local node.) In addition, queries must supply either a source
and destination LID, or a source and destination GID. They cannot be mixed. In
addition, you will usually need to provide either a SID that was specified in Distributed
SA configuration file, or a pkey that matches such a SID.

E.3.2.1 Usage

iba_opp_query [-v level] [-hca hca] [-p port] [-s LID] [-d LID]
[-S GID] [-D GID] [-k pkey] [-i sid] [-H]

E.3.2.2 Options

-v/--verbose level – Debug level. Should be a number between 1 and 7.
Default is 5.
-s/--slid LID – Source LID. Can be in decimal, hex (0x##) or octal (0##)
-d/--dlid LID – Destination LID. Can be in decimal, hex (0x##) or octal (0##)
-S/--sgid GID – Source GID. (Can be in GID (“0x########:0x########”)
or inet6 format (“##:##:##:##:##:##:##:##”))
-D/--dgid GID – Destination GID. (Can be in GID
(“0x########:0x########”) or inet6 format
(“##:##:##:##:##:##:##:##”))
-k/--pkey pkey – Partition Key
-i/--sid sid – Service ID
-h/--hca hca – The HCA to use. (Defaults to the first HCA.) The HCA can be
identified by name (“mthca0”, “qib1”, et cetera) or by number (1, 2, 3, et cetera).
-p/--port port – The port to use. (Defaults to the first port)
-H/--help – Provides this help text.

All arguments are optional, but ill-formed queries can be expected to fail. You must
provide at least a pair of LIDs, or a pair of GIDs.

††††. These programs are contained within the binutils RPM for your distribution.

Commands and Files

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
162 Doc. Number: G91902 Revision: 006US

E.3.2.3 Sample output:

iba_opp_query --slid 0x31 --dlid 0x75 --sid 0x107

Query Parameters:

 resv1 0x0000000000000107

 dgid ::

 sgid ::

 dlid 0x75

 slid 0x31

 hop 0x0

 flow 0x0

 tclass 0x0

 num_path 0x0

 pkey 0x0

 qos_class 0x0

 sl 0x0

 mtu 0x0

 rate 0x0

 pkt_life 0x0

 preference 0x0

 resv2 0x0

 resv3 0x0

Using HCA qib0

Result:

 resv1 0x0000000000000107

 dgid fe80::11:7500:79:e54a

 sgid fe80::11:7500:79:e416

 dlid 0x75

 slid 0x31

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 163

Commands and Files

 hop 0x0

 flow 0x0

 tclass 0x0

 num_path 0x0

 pkey 0xffff

 qos_class 0x0

 sl 0x1

 mtu 0x4

 rate 0x6

 pkt_life 0x10

 preference 0x0

 resv2 0x0

 resv3 0x0

E.3.2.4 Explanation of Sample Output:

This is a simple query, specifying the source and destination LIDs and the desired SID.
The first half of the output shows the full “query” that will be sent to the Distributed SA.
Unused fields are set to zero or are blank.

In the center, the line “Using HCA qib0” tells us that, because we did not specify
which HCA to query against, the tool chose one for us. (Normally, the user will never
have to specify which HCA to use. This is only relevant in the case where a single node
is connected to multiple physical IB fabrics.)

Finally, the bottom half of the output shows the result of the query. Note that, if the
query had failed (because the destination does not exist or because the SID is not
found in the Distributed SA) you will receive and error instead:

iba_opp_query --slid 0x31 --dlid 0x75 --sid 0x108

Query Parameters:

 resv1 0x0000000000000108

 dgid ::

 sgid ::

 dlid 0x75

 slid 0x31

 hop 0x0

Commands and Files

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
164 Doc. Number: G91902 Revision: 006US

 flow 0x0

 tclass 0x0

 num_path 0x0

 pkey 0x0

 qos_class 0x0

 sl 0x0

 mtu 0x0

 rate 0x0

 pkt_life 0x0

 preference 0x0

 resv2 0x0

 resv3 0x0

Using HCA qib0

Error: Get Path returned 22 for query: Invalid argument

E.3.2.5 Examples:

Query by LID and SID:

iba_opp_query -s 0x31 -d 0x75 -i 0x107

iba_opp_query --slid 0x31 --dlid 0x75 --sid 0x107

Queries using octal or decimal numbers:

iba_opp_query --slid 061 --dlid 0165 --sid 0407 (using octal
numbers)

iba_opp_query –slid 49 –dlid 113 –sid 263 (using decimal numbers)
Note that these queries are the same as the first two, only the base of the numbers
has changed.

Query by LID and PKEY:

iba_opp_query --slid 0x31 --dlid 0x75 –pkey 0x8002

Query by GID:

iba_opp_query -S fe80::11:7500:79:e416 -D fe80::11:7500:79:e54a

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 165

Commands and Files

--sid 0x107

iba_opp_query -S 0xfe80000000000000:0x001175000079e416 -D
0xfe80000000000000:0x001175000079e394 --sid 0x107

As before, these queries are identical to the first two queries – they are just using
the GIDs instead of the LIDs to specify the ports involved.

E.3.3 iba_hca_rev

This command scans the system and reports hardware and firmware information about
all the HCAs in the system. Running iba_hca_rev -v(as a root user) produces output
similar to the following when run from a node on the IB fabric:

iba_hca_rev -v

######################

st2092 - HCA 0a:00.0

ID: FALCON QDR

PN: MHQH29B-XTR

EC: A2

SN: MT1029X00540

V0: PCIe Gen2 x8

V1: N/A

YA: N/A

FW: 2.9.1000

Image type: ConnectX

FW Version: 2.9.1000

Device ID: 26428

Description: Node Port1 Port2
Sys image

GUIDs: 0002c903000ba8e0 0002c903000ba8e1 0002c903000ba8e2
0002c903000ba8e3

MACs: 0002c90ba8e0 0002c90ba8e1

Board ID: (MT_0D80120009)

VSD:

PSID: MT_0D80120009

Commands and Files

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
166 Doc. Number: G91902 Revision: 006US

Firmware Configuration:

;; Generated automatically by iniprep tool on Sun Jun 05 11:50:37
IDT 2011 from ./b0_falcon.prs

;;

;; PRS FILE FOR Eagle

;; $Id: b0_falcon.prs,v 1.18 2011-02-14 11:47:28 achiad Exp $

[PS_INFO]

Name = MHQH29B-XTR_A2

Description = ConnectX-2 VPI adapter card; dual-port; 40Gb/s QSFP;
PCIe2.0 x8 5.0GT/s; tall bracket; RoHS R6

[ADAPTER]

PSID = MT_0D80120009

pcie_gen2_speed_supported = true

adapter_dev_id = 0x673c

silicon_rev = 0xb0

gpio_mode1 = 0x0

gpio_mode0 = 0x050e070f

gpio_default_val = 0x0502010f

[HCA]

hca_header_device_id = 0x673c

hca_header_subsystem_id = 0x0017

dpdp_en = true

eth_xfi_en = true

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 167

Commands and Files

mdio_en_port1 = 0

[IB]

phy_type_port1 = XFI

phy_type_port2 = XFI

read_cable_params_port1_en = true

read_cable_params_port2_en = true

;;Polarity

eth_tx_lane_polarity_port1=0x0

eth_tx_lane_polarity_port2=0x0

eth_rx_lane_polarity_port1=0x1

eth_rx_lane_polarity_port2=0xD

;;Lane reversal

eth_tx_lane_reversal_port1=on

eth_tx_lane_reversal_port2=on

eth_rx_lane_reversal_port1=on

eth_rx_lane_reversal_port2=on

port1_sd0_ob_preemp_pre_qdr = 0x0

port2_sd0_ob_preemp_pre_qdr = 0x0

port1_sd1_ob_preemp_pre_qdr = 0x0

port2_sd1_ob_preemp_pre_qdr = 0x0

port1_sd2_ob_preemp_pre_qdr = 0x0

port2_sd2_ob_preemp_pre_qdr = 0x0

port1_sd3_ob_preemp_pre_qdr = 0x0

port2_sd3_ob_preemp_pre_qdr = 0x0

Commands and Files

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
168 Doc. Number: G91902 Revision: 006US

port1_sd0_ob_preemp_post_qdr = 0x6

port2_sd0_ob_preemp_post_qdr = 0x6

port1_sd1_ob_preemp_post_qdr = 0x6

port2_sd1_ob_preemp_post_qdr = 0x6

port1_sd2_ob_preemp_post_qdr = 0x6

port2_sd2_ob_preemp_post_qdr = 0x6

port1_sd3_ob_preemp_post_qdr = 0x6

port2_sd3_ob_preemp_post_qdr = 0x6

port1_sd0_ob_preemp_main_qdr = 0x0

port2_sd0_ob_preemp_main_qdr = 0x0

port1_sd1_ob_preemp_main_qdr = 0x0

port2_sd1_ob_preemp_main_qdr = 0x0

port1_sd2_ob_preemp_main_qdr = 0x0

port2_sd2_ob_preemp_main_qdr = 0x0

port1_sd3_ob_preemp_main_qdr = 0x0

port2_sd3_ob_preemp_main_qdr = 0x0

port1_sd0_ob_preemp_msb_qdr = 0x0

port2_sd0_ob_preemp_msb_qdr = 0x0

port1_sd1_ob_preemp_msb_qdr = 0x0

port2_sd1_ob_preemp_msb_qdr = 0x0

port1_sd2_ob_preemp_msb_qdr = 0x0

port2_sd2_ob_preemp_msb_qdr = 0x0

port1_sd3_ob_preemp_msb_qdr = 0x0

port2_sd3_ob_preemp_msb_qdr = 0x0

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 169

Commands and Files

port1_sd0_muxmain_qdr = 0x1f

port2_sd0_muxmain_qdr = 0x1f

port1_sd1_muxmain_qdr = 0x1f

port2_sd1_muxmain_qdr = 0x1f

port1_sd2_muxmain_qdr = 0x1f

port2_sd2_muxmain_qdr = 0x1f

port1_sd3_muxmain_qdr = 0x1f

port2_sd3_muxmain_qdr = 0x1f

mellanox_qdr_ib_support = true

mellanox_ddr_ib_support = true

spec1_2_ib_support = true

spec1_2_ddr_ib_support = true

spec1_2_qdr_ib_support = true

auto_qdr_tx_options = 8

auto_qdr_rx_options = 7

auto_ddr_option_0.tx_preemp_pre = 0x2

auto_ddr_option_0.tx_preemp_msb = 0x1

auto_ddr_option_0.tx_preemp_post = 0x0

auto_ddr_option_0.tx_preemp_main = 0x1b

auto_ddr_option_1.tx_preemp_pre = 0x8

auto_ddr_option_1.tx_preemp_msb = 0x0

auto_ddr_option_1.tx_preemp_post = 0x2

auto_ddr_option_1.tx_preemp_main = 0x10

Commands and Files

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
170 Doc. Number: G91902 Revision: 006US

auto_ddr_option_1.tx_preemp = 0x0

auto_ddr_option_2.tx_preemp_pre = 0xa

auto_ddr_option_2.tx_preemp_msb = 0x0

auto_ddr_option_2.tx_preemp_post = 0x2

auto_ddr_option_2.tx_preemp_main = 0x12

auto_ddr_option_2.tx_preemp = 0x0

auto_ddr_option_3.tx_preemp_pre = 0xf

auto_ddr_option_3.tx_preemp_msb = 0x1

auto_ddr_option_3.tx_preemp_post = 0x3

auto_ddr_option_3.tx_preemp_main = 0x1f

auto_ddr_option_3.tx_preemp = 0x2

auto_ddr_option_4.tx_preemp_pre = 0x4

auto_ddr_option_4.tx_preemp_msb = 0x1

auto_ddr_option_4.tx_preemp_post = 0x5

auto_ddr_option_4.tx_preemp_main = 0x12

auto_ddr_option_4.tx_preemp = 0x0

auto_ddr_option_5.tx_preemp_pre = 0x5

auto_ddr_option_5.tx_preemp_msb = 0x1

auto_ddr_option_5.tx_preemp_post = 0x3

auto_ddr_option_5.tx_preemp_main = 0x13

auto_ddr_option_5.tx_preemp = 0x0

auto_ddr_option_6.tx_preemp_pre = 0x3

auto_ddr_option_6.tx_preemp_msb = 0x1

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 171

Commands and Files

auto_ddr_option_6.tx_preemp_post = 0x4

auto_ddr_option_6.tx_preemp_main = 0x1f

auto_ddr_option_6.tx_preemp = 0x0

auto_ddr_option_7.tx_preemp_pre = 0x8

auto_ddr_option_7.tx_preemp_msb = 0x1

auto_ddr_option_7.tx_preemp_post = 0x3

auto_ddr_option_7.tx_preemp_main = 0x17

auto_ddr_option_7.tx_preemp = 0x0

auto_ddr_option_8.tx_preemp_pre = 0xf

auto_ddr_option_8.tx_preemp_msb = 0x1

auto_ddr_option_8.tx_preemp_post = 0x3

auto_ddr_option_8.tx_preemp_main = 0x14

auto_ddr_option_8.tx_preemp = 0x2

auto_ddr_option_9.tx_preemp_pre = 0x8

auto_ddr_option_9.tx_preemp_msb = 0x0

auto_ddr_option_9.tx_preemp_post = 0x3

auto_ddr_option_9.tx_preemp_main = 0x17

auto_ddr_option_9.tx_preemp = 0x0

auto_ddr_option_10.tx_preemp_pre = 0x8

auto_ddr_option_10.tx_preemp_msb = 0x0

auto_ddr_option_10.tx_preemp_post = 0x3

auto_ddr_option_10.tx_preemp_main = 0x17

auto_ddr_option_10.tx_preemp = 0x0

Commands and Files

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
172 Doc. Number: G91902 Revision: 006US

auto_ddr_option_11.tx_preemp_pre = 0xf

auto_ddr_option_11.tx_preemp_msb = 0x0

auto_ddr_option_11.tx_preemp_post = 0x3

auto_ddr_option_11.tx_preemp_main = 0x19

auto_ddr_option_11.tx_preemp = 0x0

auto_ddr_option_12.tx_preemp_pre = 0xf

auto_ddr_option_12.tx_preemp_msb = 0x0

auto_ddr_option_12.tx_preemp_post = 0x3

auto_ddr_option_12.tx_preemp_main = 0x19

auto_ddr_option_12.tx_preemp = 0x0

auto_ddr_option_13.tx_preemp_pre = 0x0

auto_ddr_option_13.tx_preemp_msb = 0x0

auto_ddr_option_13.tx_preemp_post = 0x0

auto_ddr_option_13.tx_preemp_main = 0x5

auto_ddr_option_13.tx_preemp = 0x0

auto_ddr_option_14.tx_preemp_pre = 0x0

auto_ddr_option_14.tx_preemp_msb = 0x0

auto_ddr_option_14.tx_preemp_post = 0x0

auto_ddr_option_14.tx_preemp_main = 0x5

auto_ddr_option_14.tx_preemp = 0x0

auto_ddr_option_15.tx_preemp_pre = 0x0

auto_ddr_option_15.tx_preemp_msb = 0x0

auto_ddr_option_15.tx_preemp_post = 0x0

auto_ddr_option_15.tx_preemp_main = 0x5

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 173

Commands and Files

auto_ddr_option_15.tx_preemp = 0x0

;;;;; Integer parameter. Values range : 0x0 - 0xf.

auto_ddr_option_0.rx_offs_lowpass_en = 0x0

auto_ddr_option_1.rx_offs_lowpass_en = 0x0

auto_ddr_option_2.rx_offs_lowpass_en = 0x0

auto_ddr_option_3.rx_offs_lowpass_en = 0x0

auto_ddr_option_4.rx_offs_lowpass_en = 0x0

auto_ddr_option_5.rx_offs_lowpass_en = 0x0

auto_ddr_option_6.rx_offs_lowpass_en = 0x0

auto_ddr_option_7.rx_offs_lowpass_en = 0x0

auto_ddr_option_0.rx_offs = 0x0

auto_ddr_option_1.rx_offs = 0x0

auto_ddr_option_2.rx_offs = 0x0

auto_ddr_option_3.rx_offs = 0x0

auto_ddr_option_4.rx_offs = 0x0

auto_ddr_option_5.rx_offs = 0x0

auto_ddr_option_6.rx_offs = 0x0

auto_ddr_option_7.rx_offs = 0x0

auto_ddr_option_0.rx_equal_offs = 0x0

auto_ddr_option_1.rx_equal_offs = 0x0

auto_ddr_option_2.rx_equal_offs = 0x0

auto_ddr_option_3.rx_equal_offs = 0x0

auto_ddr_option_4.rx_equal_offs = 0x0

auto_ddr_option_5.rx_equal_offs = 0x0

Commands and Files

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
174 Doc. Number: G91902 Revision: 006US

auto_ddr_option_6.rx_equal_offs = 0x0

auto_ddr_option_7.rx_equal_offs = 0x0

auto_ddr_option_0.rx_muxeq = 0x0

auto_ddr_option_1.rx_muxeq = 0x0

auto_ddr_option_2.rx_muxeq = 0x0

auto_ddr_option_3.rx_muxeq = 0x0

auto_ddr_option_4.rx_muxeq = 0x0

auto_ddr_option_5.rx_muxeq = 0x0

auto_ddr_option_6.rx_muxeq = 0x0

auto_ddr_option_7.rx_muxeq = 0x0

auto_ddr_option_0.rx_muxmain = 0x1f

auto_ddr_option_1.rx_muxmain = 0x1f

auto_ddr_option_2.rx_muxmain = 0x1f

auto_ddr_option_3.rx_muxmain = 0x1f

auto_ddr_option_4.rx_muxmain = 0x1f

auto_ddr_option_5.rx_muxmain = 0x1f

auto_ddr_option_6.rx_muxmain = 0x1f

auto_ddr_option_7.rx_muxmain = 0x1f

auto_ddr_option_0.rx_main = 0x1

auto_ddr_option_1.rx_main = 0xf

auto_ddr_option_2.rx_main = 0xf

auto_ddr_option_3.rx_main = 0xf

auto_ddr_option_4.rx_main = 0xe

auto_ddr_option_5.rx_main = 0xe

auto_ddr_option_6.rx_main = 0xf

auto_ddr_option_7.rx_main = 0xf

auto_ddr_option_0.rx_extra_hs_gain = 0x0

auto_ddr_option_1.rx_extra_hs_gain = 0x3

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 175

Commands and Files

auto_ddr_option_2.rx_extra_hs_gain = 0x2

auto_ddr_option_3.rx_extra_hs_gain = 0x4

auto_ddr_option_4.rx_extra_hs_gain = 0x1

auto_ddr_option_5.rx_extra_hs_gain = 0x2

auto_ddr_option_6.rx_extra_hs_gain = 0x7

auto_ddr_option_7.rx_extra_hs_gain = 0x0

auto_ddr_option_0.rx_sigdet_th = 0x1

auto_ddr_option_1.rx_sigdet_th = 0x1

auto_ddr_option_2.rx_sigdet_th = 0x1

auto_ddr_option_3.rx_sigdet_th = 0x1

auto_ddr_option_4.rx_sigdet_th = 0x1

auto_ddr_option_5.rx_sigdet_th = 0x1

auto_ddr_option_6.rx_sigdet_th = 0x1

auto_ddr_option_7.rx_sigdet_th = 0x1

auto_ddr_option_0.rx_equalization = 0x4

auto_ddr_option_1.rx_equalization = 0x0

auto_ddr_option_2.rx_equalization = 0x0

auto_ddr_option_3.rx_equalization = 0x0

auto_ddr_option_4.rx_equalization = 0x0

auto_ddr_option_5.rx_equalization = 0x0

auto_ddr_option_6.rx_equalization = 0x0

auto_ddr_option_7.rx_equalization = 0x0

auto_ddr_option_9.rx_muxeq = 0x0

auto_ddr_option_9.rx_muxmain = 0x1f

auto_ddr_option_9.rx_main = 0xf

auto_ddr_option_9.rx_extra_hs_gain = 0x0

auto_ddr_option_9.rx_equalization = 0x0

Commands and Files

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
176 Doc. Number: G91902 Revision: 006US

auto_ddr_option_10.rx_muxeq = 0x0

auto_ddr_option_10.rx_muxmain = 0x1f

auto_ddr_option_10.rx_main = 0xf

auto_ddr_option_10.rx_extra_hs_gain = 0x0

auto_ddr_option_10.rx_equalization = 0x0

auto_ddr_option_11.rx_muxeq = 0x04

auto_ddr_option_11.rx_muxmain = 0x1f

auto_ddr_option_11.rx_main = 0xf

auto_ddr_option_11.rx_extra_hs_gain = 0x4

auto_ddr_option_11.rx_equalization = 0x7f

auto_ddr_option_12.rx_muxeq = 0x6

auto_ddr_option_12.rx_muxmain = 0x1f

auto_ddr_option_12.rx_main = 0xf

auto_ddr_option_12.rx_extra_hs_gain = 0x4

auto_ddr_option_12.rx_equalization = 0x7f

auto_ddr_option_13.rx_muxeq = 0x0

auto_ddr_option_13.rx_muxmain = 0x1f

auto_ddr_option_13.rx_main = 0xf

auto_ddr_option_13.rx_extra_hs_gain = 0x3

auto_ddr_option_13.rx_equalization = 0x0

auto_ddr_option_14.rx_muxeq = 0x0

auto_ddr_option_14.rx_muxmain = 0x1f

auto_ddr_option_14.rx_main = 0xf

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 177

Commands and Files

auto_ddr_option_14.rx_extra_hs_gain = 0x3

auto_ddr_option_14.rx_equalization = 0x0

auto_ddr_option_15.rx_muxeq = 0x0

auto_ddr_option_15.rx_muxmain = 0x1f

auto_ddr_option_15.rx_main = 0xf

auto_ddr_option_15.rx_extra_hs_gain = 0x3

auto_ddr_option_15.rx_equalization = 0x0

center_mix90phase = true

auto_kr_option_6.rx_extra_hs_gain = 0x3

ext_phy_board_port1 = FALCON

ext_phy_board_port2 = FALCON

[PLL]

lbist_en = 0

lbist_shift_freq = 3

pll_stabilize = 0x13

flash_div = 0x3

lbist_array_bypass = 1

lbist_pat_cnt_lsb = 0x2

core_f = 44

core_r = 27

ddr_6_db_preemp_pre = 0x3

ddr_6_db_preemp_main = 0xe

[FW]

Commands and Files

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
178 Doc. Number: G91902 Revision: 006US

Firmware Verification:

 FS2 failsafe image. Start address: 0x0. Chunk size 0x80000:

 NOTE: The addresses below are contiguous logical addresses.
Physical addresses on

 flash may be different, based on the image start address
and chunk size

 /0x00000038-0x00001233 (0x0011fc)/ (BOOT2) - OK

 /0x00001234-0x0000280f (0x0015dc)/ (BOOT2) - OK

 /0x00002810-0x000034ef (0x000ce0)/ (Configuration) - OK

 /0x000034f0-0x00003533 (0x000044)/ (GUID) - OK

 /0x00003534-0x0000366b (0x000138)/ (Image Info) - OK

 /0x0000366c-0x0000946f (0x005e04)/ (DDR) - OK

 /0x00009470-0x0000ab53 (0x0016e4)/ (DDR) - OK

 /0x0000ab54-0x00016b43 (0x00bff0)/ (DDR) - OK

 /0x00016b44-0x0001fb57 (0x009014)/ (DDR) - OK

 /0x0001fb58-0x000720ab (0x052554)/ (DDR) - OK

 /0x000720ac-0x0007308f (0x000fe4)/ (DDR) - OK

 /0x00073090-0x00099787 (0x0266f8)/ (DDR) - OK

 /0x00099788-0x0009d11f (0x003998)/ (DDR) - OK

 /0x0009d120-0x000a0b8b (0x003a6c)/ (DDR) - OK

 /0x000a0b8c-0x000a1037 (0x0004ac)/ (Configuration) - OK

 /0x000a1038-0x000a1093 (0x00005c)/ (Jump addresses) - OK

 /0x000a1094-0x000a1707 (0x000674)/ (FW Configuration) - OK

 /0x00000000-0x000a1707 (0x0a1708)/ (Full Image) - OK

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 179

Commands and Files

FW image verification succeeded. Image is bootable.

######################

E.3.4 iba_manage_switch

(Switch) Allows management of externally managed switches (including 12200,
12200-18, and HP BLc Intel 4X QDR) without using the IFS software. It is designed to
operate on one switch at a time, taking a mandatory target GUID parameter.

E.3.4.1 Usage

iba_manage_switch -t target-guid [-H] [-v] [-h hca] [-p port] [
-x] [-S] [-f fileName] [-r] [-C configOption] [-i integer-value]
[-s string-value] [-c captureFile] operation

E.3.4.2 Options

-H – help (this message)

-v – verbose - additional output

-t target-guid – guid of target switch in hex format, for example
0x00066a00e3001234

-h hca – HCA number, default is first HCA

-p port – port number, default is first active port

-x – clobber previous results file

-S – enforce password, will be prompted for each subcommand

-f fileName – fileName of the emfw file to be used in fwUpdate operation - must be
a valid emfw file with .emfw suffix

-r – reset switch after fwUpdate (only valid with fwUpdate operation)

-C configOption – configuration option for setConfigValue operation
mtucap (mtu capability) – use -i for integer value (4-2048, 5-4096)
vlcap (vl capability) – use -i for integer value (1=1VL, 2=2VLs, 3=4VLs,
4=8VLs, 5=15VLs)
linkwidth (link width supported) – use -i for integer value (1=1X, 2=4X,
3=1X/4X, 4=8X, 5=1X/8X, 6=4X/8X, 7=1X/4X/8X)
vlcreditdist (VL credit distribution) – use -i for integer value (0, 1, 2, 3,
or 4)
linkspeed (link speed supported) – use -i for integer value (1=SDR,
2=DDR, 3=SDR/DDR, 4=QDR, 7=SDR/DDR/QDR)

-i integer-value – integer value

-s string-value – string value

-c captureFile – filename of capture output file

Commands and Files

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
180 Doc. Number: G91902 Revision: 006US

operation – operation to perform:
fwUpdate – perform firmware update using fileName parameter, must be an
emfw file
fwVerify – perform firmware validation, validate firmware in primary/secondary
EEPROMs, report which was booted
ping – test for switch presence
reboot – reboot switch
setConfigValue – update configuration value, use -C for configuration option
and -i for integer value
setIBNodeDesc – set the IB node description, use -s for string value of node
desc
setPassword – set the vendor key (prompts for password to be used for
subsequent switch access)
showConfig – report user-configurable settings
showFwVersion – report firmware version running on switch
showPowerCooling – report status of power supplies and fans
capture – perform capture of switch
showVPD – report VPD information of switch

E.3.4.3 Example

iba_manage_switch -t 0x00066a00e3001234 -f
Intel_12000_V1_firmware.7.0.0.0.27.emfw fwUpdate

iba_manage_switch -t 0x00066a00e3001234 reboot

iba_manage_switch -t 0x00066a00e3001234 showFwVersion

iba_manage_switch -t 0x00066a00e3001234 -s i12k1234
setIBNodeDesc

iba_manage_switch -t 0x00066a00e3001234 -C mtucap -i 4
setConfigValue

iba_manage_switch -H

The results are recorded in iba_manage_switch.res file in the current directory. Use
the -x option to clobber and create a new file.

E.3.5 iba_packet_capture

This tool operates in cooperation with IB snoop device in the QIB driver. It enables
packet capture and subsequent dump to file.

The snoop_enable variable must be set to 1 (enabled) in the modprobe.conf
/ib_qib.conf file to create snoop devices and capture devices. If snoop_enable is
set to 0 (disable) then no snoop and capture devices are created.

This tool captures packets in memory in a large ring buffer and dumps the packet
information to a file when it is instructed by a set option. The tool supports filtering of
several IB fields. The tool is primarily intended for internal Intel use.

Edit the file /etc/modprobe.d/ib_qib.conf to add snoop_enable=1 to the
options line. If the file does not exist, it can be created with the following text:

options ib_qib snoop_enable=1

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 181

Commands and Files

E.3.5.1 Usage

iba_packet_capture [-o outfile] [-d devfile] [-f filterfile] [-a
alarm] [-s maxblocks] [-v]

E.3.5.2 Options

-o outfile – output file for captured packets – default is packetDump.pcap

-d devfile – snoop device file for capturing packets – default is
/dev/ipath_capture_00_01

-f filterfile – filter file used for filtering – if absent, no filtering

-a alarm – number of seconds for alarm trigger to dump capture and exit

-s maxblocks – max 64 byte blocks of data to capture in units of Mi (1024*1024)

-v – verbose output

To stop capture and trigger dump, kill with SIGINT (Ctrl-C) or SIGUSR1 (with the kill
command). The program will dump packets to file and exit

A sample filter file is located at /opt/iba/samples/filterFile.txt. This file
should be copied to the user's home directory for editing and used with the packet
capture utility.

E.3.6 ibhosts

This tool determines if all the hosts in your IB fabric are up and visible to the subnet
manager and to each other. It is installed from the openib-diag RPM. Running
ibhosts (as a root user) produces output similar to the following when run from a
node on the IB fabric:

ibhosts

Ca : 0x0008f10001280000 ports 2 "Voltaire InfiniBand
Fiber-Channel Router"

Ca : 0x0011750000ff9869 ports 1 "idev-11"

Ca : 0x0011750000ff9878 ports 1 "idev-05"

Ca : 0x0011750000ff985c ports 1 "idev-06"

Ca : 0x0011750000ff9873 ports 1 "idev-04"

E.3.7 ibstatus

This program displays basic information on the status of IB devices that are currently in
use when OpenFabrics RPMs are installed. It is installed from the openib-diag RPM.

Following is a sample output for the DDR HCAs:

ibstatus

Infiniband device 'qib0' port 1 status:

Commands and Files

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
182 Doc. Number: G91902 Revision: 006US

 default gid: fe80:0000:0000:0000:0011:7500:0078:a5d2

 base lid: 0x1

 sm lid: 0x4

 state: 4: ACTIVE

 phys state: 5: LinkUp

 rate: 40 Gb/sec (4X QDR)

 link_layer: InfiniBand

E.3.8 ibtracert

The tool ibtracert determines the path that IB packets travel between two nodes. It
is installed from the openib-diag RPM. The IB LIDs of the two nodes in this example
are determined by using the ipath_control -i command on each node. The
ibtracert tool produces output similar to the following when run (as a root user)
from a node on the IB fabric:

ibtracert 0xb9 0x9a

 From ca {0x0011750000ff9886} portnum 1 lid 0xb9-0xb9 "iqa-37"

 [1] -> switch port {0x0002c9010a19bea0}[1] lid 0x14-0x14
"MT47396 Infiniscale-III"

 [24] -> switch port {0x00066a0007000333}[8] lid 0xc-0xc
"SilverStorm 9120 GUID=0x00066a000200016c Leaf 6, Chip A"

 [6] -> switch port {0x0002c90000000000}[15] lid 0x9-0x9
"MT47396 Infiniscale-III"

 [7] -> ca port {0x0011750000ff9878}[1] lid 0x9a-0x9a "idev-05"

 To ca {0x0011750000ff9878} portnum 1 lid 0x9a-0x9a "idev-05"

E.3.9 ibv_devinfo

This program displays information about IB devices, including various kinds of
identification and status data. It is installed from the openib-diag RPM. Use this
program when OpenFabrics is enabled. ibv_devinfo queries RDMA devices. Use the
-v option to see more information. For example:

ibv_devinfo

hca_id: qib0

 transport: InfiniBand (0)

 fw_ver: 0.0.0

 node_guid: 0011:7500:0078:a5d2

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 183

Commands and Files

 sys_image_guid: 0011:7500:0078:a5d2

 vendor_id: 0x1175

 vendor_part_id: 29474

 hw_ver: 0x2

 board_id: InfiniPath_QLE7340

 phys_port_cnt: 1

 port: 1

 state: PORT_ACTIVE (4)

 max_mtu: 4096 (5)

 active_mtu: 4096 (5)

 sm_lid: 4

 port_lid: 1

 port_lmc: 0x00

 link_layer: IB

E.3.10 ident

The ident strings are available in ib_qib.ko. Running ident provides driver
information similar to the following. For Intel RPMs on a SLES distribution, it will look
like the following example:

ident/lib/modules/OS_version/updates/kernel/drivers/infiniband/hw
/qib/ib_qib.ko

/lib/modules/OS_version/updates/kernel/drivers/infiniband/hw/qib/
ib_qib.ko:

$Id: Intel OFED Release x.x.x $
$Date: yyyy-mm-dd-hh:mm $

Note: For Intel RPMs on a RHEL distribution, the drivers folder is in the updates folder instead
of the kernels folder as follows:

/lib/modules/OS_version/updates/drivers/infiniband/hw/qib/ib_qib.
ko

If the /lib/modules/OS_version/updates directory is not present, then the driver
in use is the one that comes with the core kernel. In this case, either the kernel-ib
RPM is not installed or it is not configured for the current running kernel.

Commands and Files

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
184 Doc. Number: G91902 Revision: 006US

If the updates directory is present, but empty except for the subdirectory kernel,
then an OFED install is probably being used, and the ident string will be empty. For
example:

$ cd /lib/modules/OS_version/updates

$ ls

kernel

$ cd kernel/drivers/infiniband/hw/qib/
lib/modules/2.6.18-8.el5/updates/kernel/drivers/infiniband/hw/qib

$ ident ib_qib.ko

 ib_qib.ko:

 ident warning: no id keywords in ib_qib.ko

Note: ident is in the optional rcs RPM, and is not always installed.

E.3.11 ipath_checkout

The ipath_checkout tool is a bash script that verifies that the installation is correct
and that all the nodes of the network are functioning and mutually connected by the
InfiniPath fabric. It is installed from the infinipath RPM. It must be run on a front
end node, and requires specification of a nodefile. For example:

$ ipath_checkout [options] nodefile

The nodefile lists the hostnames of the nodes of the cluster, one hostname per line.
The format of nodefile is as follows:

hostname1

hostname2

...

Note: The hostnames in the nodefile are Ethernet hostnames, not IPv4 addresses.

Note: To create a nodefile, use the ibhosts program. It will generate a list of available
nodes that are already connected to the switch.

ipath_checkout performs the following seven tests on the cluster:
1. Executes the ping command to all nodes to verify that they all are reachable from

the front end.
2. Executes the ssh command to each node to verify correct configuration of ssh.
3. Gathers and analyzes system configuration from the nodes.
4. Gathers and analyzes RPMs installed on the nodes.
5. Verifies InfiniPath hardware and software status and configuration, including tests

for link speed, PIO bandwidth (incorrect MTRR settings), and MTU size.
6. Verifies the ability to mpirun jobs on the nodes.
7. Runs a bandwidth and latency test on every pair of nodes and analyzes the results.

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 185

Commands and Files

The options available with ipath_checkout are shown in Table E.3.11.1.

E.3.11.1 Options

-h, --help – These options display help messages describing how a command is
used.

-v, --verbose
-vv, --vverbose
-vvv, --vvverbose – These options specify three successively higher levels of detail
in reporting test results. There are four levels of detail in all, including the case where
none of these options are given.

-c, --continue – When this option is not specified, the test terminates when any
test fails. When specified, the tests continue after a failure, with failing nodes excluded
from subsequent tests.

-k, --keep – This option keeps intermediate files that were created while performing
tests and compiling reports. Results are saved in a directory created by mktemp and
named infinipath_XXXXXX or in the directory name given to --workdir.

--workdir=DIR – Use DIR to hold intermediate files created while running tests. DIR
must not already exist.

--run=LIST – This option runs only the tests in LIST. See the seven tests listed
previously. For example, --run=123 will run only tests 1, 2, and 3.

--skip=LIST – This option skips the tests in LIST. See the seven tests listed
previously. For example, --skip=2457 will skip tests 2, 4, 5, and 7.

-d, --debug – This option turns on the -x and -v flags in bash(1).

In most cases of failure, the script suggests recommended actions. Also refer to the
ipath_checkout man page.

E.3.12 ipath_control

The ipath_control tool is a shell script that manipulates various parameters for the
InfiniPath driver. It is installed from the infinipath RPM. Many of the parameters are
used only when diagnosing problems, and may require special system configurations.
Using these options may require restarting the driver or utility programs to recover
from incorrect parameters.

Most of the functionality is accessed via the /sys filesystem. This shell script gathers
the same information contained in these files:

/sys/class/infiniband/qib0/device/boardversion

/sys/class/infiniband/qib0/ports/1/linkcontrol/status_str

/sys/class/infiniband/qib0/device/driver/version

These files are also documented in Table 10-4, “Useful Files” on page 191 and
Table 10-5, “status_str File Contents” on page 192.

Other than the -i option, this script must be run with root permissions. See the man
pages for ipath_control for more details.

Here is sample usage and output:

Commands and Files

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
186 Doc. Number: G91902 Revision: 006US

% ipath_control -i

$Id: Intel OFED Release x.x.x $ $Date: yyyy-mm-dd-hh:mm $

0: Version: ChipABI 2.0, InfiniPath_QLE7342, InfiniPath1 6.1, SW
Compat 2

0: Serial: RIB0941C00005 LocalBus: PCIe,5000MHz,x8

0,1: Status: 0xe1 Initted Present IB_link_up IB_configured

0,1: LID=0x1 GUID=0011:7500:0079:e574

0,1: HRTBT:Auto LINK:40 Gb/sec (4X QDR)

0,2: Status: 0x21 Initted Present [IB link not Active]

0,2: LID=0xffff GUID=0011:7500:0079:e575

The -i option combined with the -v option is very useful for looking at the IB
width/rate and PCIe lanes/rate. For example:

% ipath_control -iv

$Id: Intel OFED Release x.x.x $ $Date: yyyy-mm-dd-hh:mm $

0: Version: ChipABI 2.0, InfiniPath_QLE7342, InfiniPath1 6.1, SW
Compat 2

0: Serial: RIB0941C00005 LocalBus: PCIe,5000MHz,x8

0,1: Status: 0xe1 Initted Present IB_link_up IB_configured

0,1: LID=0x1 GUID=0011:7500:0079:e574

0,1: HRTBT:Auto LINK:40 Gb/sec (4X QDR)

0,2: Status: 0x21 Initted Present [IB link not Active]

0,2: LID=0xffff GUID=0011:7500:0079:e575

0,2: HRTBT:Auto LINK:10 Gb/sec (4X)

Note: On the first line, Release version refers to the current software release. The second
line contains chip architecture version information.

E.3.13 ipath_mtrr

Note: Use ipath_mtrr if you are not using the default PAT mechanism to enable write
combining.

MTRR is used by the InfiniPath driver to enable write combining to the Intel on-chip
transmit buffers. This option improves write bandwidth to the Intel chip by writing
multiple words in a single bus transaction (typically 64 bytes). This option applies only
to x86_64 systems. It can often be set in the BIOS.

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 187

Commands and Files

However, some BIOS’ do not have the MTRR mapping option. It may have a different
name, depending on the chipset, vendor, BIOS, or other factors. For example, it is
sometimes referred to as 32 bit memory hole. This setting must be enabled.

If there is no setting for MTRR mapping or 32 bit memory hole, contact your system or
motherboard vendor and ask how to enable write combining.

You can check and adjust these BIOS settings using the BIOS Setup utility. For specific
instructions, follow the hardware documentation that came with your system.

Intel also provides a script, ipath_mtrr, which sets the MTRR registers, enabling
maximum performance from the InfiniPath driver. This Python script is available as a
part of the InfiniPath software download, and is contained in the infinipath* RPM. It
is installed in /bin.

To diagnose the machine, run it with no arguments (as a root user):

ipath_mtrr

The test results will list any problems, if they exist, and provide suggestions on what to
do.

To fix the MTRR registers, use:

ipath_mtrr -w

Restart the driver after fixing the registers.

This script needs to be run after each system reboot. It can be set to run automatically
upon restart by adding this line in /etc/sysconfig/infinipath:

IPATH_MTRR_ACTIVE=1

See the ipath_mtrr(8) man page for more information on other options.

E.3.14 ipath_pkt_test

This program is installed from the infinipath RPM. Use ipath_pkt_test to do one
of the following:

• Test the IB link and bandwidth between two InfiniPath HCAs.
• Using an IB loopback connector, test the link and bandwidth within a single

InfiniPath HCA.

The ipath_pkt_test program runs in either ping-pong mode (send a packet, wait for
a reply, repeat) or in stream mode (send packets as quickly as possible, receive
responses as they come back).

Upon completion, the sending side prints statistics on the packet bandwidth, showing
both the payload bandwidth and the total bandwidth (including IB and InfiniPath
headers). See the man page for more information.

E.3.15 ipathstats

The ipathstats program is useful for diagnosing InfiniPath problems, particularly
those that are performance related. It is installed from the infinipath RPM. It
displays both driver statistics and hardware counters, including both performance and
"error" (including status) counters.

Commands and Files

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
188 Doc. Number: G91902 Revision: 006US

Running ipathstats -c 10, for example, displays the number of packets and 32-bit
words of data being transferred on a node in each 10-second interval. This output may
show differences in traffic patterns on different nodes, or at different stages of
execution. See the man page for more information.

E.3.16 lsmod

When you need to find which InfiniPath and OpenFabrics modules are running, type the
following command:

lsmod | egrep ’ib_|rdma_|findex’

E.3.17 modprobe

Use this program to load/unload the drivers. You can check to see if the driver has
loaded by using this command:

modprobe -v ib_qib

The -v option typically only prints messages if there are problems.

The configuration file that modprobe uses is /etc/modprobe.conf
(/etc/modprobe.conf.local on SLES). In this file, various options and naming
aliases can be set.

E.3.18 mpirun

mpirun determines whether the program is being run against a Intel or non-Intel
driver. It is installed from the mpi-frontend RPM. Sample commands and results are
shown in the following paragraphs.

Intel-built:

$ mpirun -np 2 -m /tmp/id1 -d0x101 mpi_latency 1 0
asus-01:0.ipath_setaffinity: Set CPU affinity to 1, port 0:2:0
(1 active chips)
asus-01:0.ipath_userinit: Driver is Intel-built

Non-Intel built:

$ mpirun -np 2 -m /tmp/id1 -d0x101 mpi_latency 1 0
asus-01:0.ipath_setaffinity: Set CPU affinity to 1, port 0:2:0
(1 active chips)
asus-01:0.ipath_userinit: Driver is not Intel-built

E.3.19 mpi_stress

This is an MPI stress test program designed to load up an MPI interconnect with
point-to-point messages while optionally checking for data integrity. By default, it runs
with all-to-all traffic patterns, optionally including oneself and one’s local shared
memory (shm) peers. It can also be set up with multi-dimensional grid traffic patterns;
this can be parameterized to run rings, open 2D grids, closed 2D grids, cubic lattices,
hypercubes, and so on.

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 189

Commands and Files

Optionally, the message data can be randomized and checked using CRC checksums
(strong but slow) or XOR checksums (weak but fast). The communication kernel is built
out of non-blocking point-to-point calls to load up the interconnect. The program is not
designed to exhaustively test out different MPI primitives. Performance metrics are
displayed, but should be carefully interpreted in terms of the features enabled.

This is an MPI application and should be run under mpirun or its equivalent.

The following example runs 16 processes and a specified hosts file using the default
options (all-to-all connectivity, 64 to 4MB messages in powers of two, one iteration, no
data integrity checking):

$ mpirun -np 16 -m hosts mpi_stress

There are a number of options for mpi_stress; this one may be particularly useful:

-P

This option poisons receive buffers at initialization and after each receive; pre-initialize
with random data so that any parts that are not being correctly updated with received
data can be observed later.

See the mpi_stress(1) man page for more information.

E.3.20 rpm

To check the contents of an installed RPM, use these commands:

$ rpm -qa infinipath* mpi-*

$ rpm -q --info infinipath # (etc)

The option-q queries. The option --qa queries all. To query a package that has not yet
been installed, use the -qpl option.

E.3.21 strings

Use the strings command to determine the content of and extract text from a binary
file.

The command strings can also be used. For example, the command:

$ strings -a /usr/lib/libinfinipath.so.4.0 | grep Date:

produces this output:

$Date: 2009-02-26 12:05 Release2.3 InfiniPath $

Note: The strings command is part of binutils (a development RPM), and may not be
available on all machines.

E.4 Common Tasks and Commands
Table 10-3 lists some common commands that help with administration and
troubleshooting. Note that mpirun in nonmpi mode can perform a number of checks.

Commands and Files

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
190 Doc. Number: G91902 Revision: 006US

Table 10-3. Common Tasks and Commands Summary

Function Command

Check the system state

ipath_checkout [options] hostsfile

ipathbug-helper -m hostsfile \†

> ipath-info-allhosts

mpirun -m hostsfile -ppn 1 \†

-np numhosts -nonmpi ipath_control -i
Also see the file:

/sys/class/infiniband/ipath*/device/sta
tus_str
where * is the unit number. This file provides information about the
link state, possible cable/switch problems, and hardware errors.

Verify hosts via an Ethernet ping ipath_checkout --run=1 hostsfile

Verify ssh ipath_checkout --run=2 hostsfile

Show uname -a for all hosts
mpirun -m hostsfile -ppn 1 \†

-np numhosts -nonmpi uname -a

Reboot hosts

As a root user:

mpirun -m hostsfile -ppn 1 \†

-np numhosts -nonmpi reboot

Run a command on all hosts

mpirun -m hostsfile -ppn 1 \†

-np numhosts -nonmpi command

Examples:

mpirun -m hostsfile -ppn 1 \†

-np numhosts -nonmpi hostname

mpirun -m hostsfile -ppn 1 \†

-np numhosts -nonmpi date

Copy a file to all hosts

Using bash:

$ for i in $(cat hostsfile)

do

scp source $i:destination

done

Summarize the fabric components
ipathbug-helper -m hostsfile \†

> ipath-info-allhosts

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 191

Commands and Files

E.5 Summary and Descriptions of Useful Files
Useful files are summarized in Table 10-4. Names in blue text are linked to a
corresponding section that provides further details.

E.5.1 boardversion

It is useful to keep track of the current version of the chip architecture. You can check
the version by looking in this file:

/sys/class/infiniband/qib0/device/boardversion

Example contents are:

ChipABI 2.0,InfiniPath_QLE7280,InfiniPath1 5.2,PCI 2,SW Compat 2

This information is useful for reporting problems to Technical Support.

Note: This file returns information of where the form factor HCA is installed. The PCIe
half-height, short form factor is referred to as the QLE7340 or QLE7342.

E.5.2 status_str

Check the file status_str to verify that the InfiniPath software is loaded and
functioning. The file is located here:

/sys/class/infiniband/qib/device/status_str

Show the status of host IB ports

ipathbug-helper -m hostsfile \†

> ipath-info-allhosts

mpirun -m hostsfile -ppn 1 \†

-np numhosts -nonmpi ipath_control -i

Verify that the hosts see each other ipath_checkout --run=5 hostsfile

Check MPI performance ipath_checkout --run=7 hostsfile

Generate all hosts problem report
information

ipathbug-helper -m hostsfile \†

> ipath-info-allhosts

†. The \ indicates commands that are broken across multiple lines.

Table 10-3. Common Tasks and Commands Summary (Continued)

Function Command

Table 10-4. Useful Files

 File Name Function

boardversion File that shows the version of the chip architecture.

status_str File that verifies that the InfiniPath software is loaded and functioning

/var/log/messages Logfile where various programs write messages. Tracks activity on your
system

version File that provides version information of installed software/drivers

Commands and Files

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
192 Doc. Number: G91902 Revision: 006US

Table 10-5 shows the possible contents of the file, with brief explanations of the
entries.

This same directory contains other files with information related to status. These files
are summarized in Table 10-6.

E.5.3 version

You can check the version of the installed InfiniPath software by looking in:

/sys/class/infiniband/qib0/device/driver/module/version

Intel-built drivers have contents similar to:

Version_Major.Version_Minor $Id: Intel True Scale Fabric OFED
Release x.x.x$ $Date: DDD MMM dd hh:mm:ss timezone yyyy $

Non-Intel-built drivers (in this case kernel.org) have contents similar to:

Version_Major.Version_Minor $Id: qib kernel.org driver $

Table 10-5. status_str File Contents

File Contents Description

Initted The driver has loaded and successfully initialized the IBA6110 or
IBA7220 ASIC.

Present The IBA6110 or IBA7220 ASIC has been detected (but not
initialized unless Initted is also present).

IB_link_up The IB link has been configured and is in the active state;
packets can be sent and received.

IB_configured The IB link has been configured. It may or may not be up and
usable.

NOIBcable

Unable to detect link present. This problem can be caused by
one of the following problems with the HCAs:
• No cable is plugged into the HCA.
• The HCA is connected to something other than another IB

device, or the connector is not fully seated.
• The switch where the HCA is connected is down.

Fatal_Hardware_Error Check the system log (default is /var/log/messages)
for more information, then call Technical Support.

Table 10-6. Status—Other Files

File Name Contents

lid IB LID. The address on the IB fabric, similar conceptually to an IP address for TCP/IP.
Local refers to it being unique only within a single IB fabric.

mlid The Multicast Local ID (MLID), for IB multicast. Used for InfiniPath ether broadcasts,
since IB has no concept of broadcast.

guid The GUID for the InfiniPath chip, it is equivalent to a MAC address.

nguid
The number of GUIDs that are used. If nguids=2 and two chips are discovered,
the first chip is assigned the requested GUID (from eeprom, or ipath_sma),
and the second chip is assigned GUID+1.

serial The serial number of the Intel HCA.

unit A unique number for each card or chip in a system.

status The numeric version of the status_str file, described in Table 10-5.

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 193

Commands and Files

E.6 Summary of Configuration Files
Table 10-7 contains descriptions of the configuration and configuration template files
used by the InfiniPath and OpenFabrics software.

§ §

Table 10-7. Configuration Files

Configuration File Name Description

/etc/modprobe.conf

Specifies options for modules when added or removed
by the modprobe command. Also used for creating
aliases. The PAT write-combing option is set here.
For Red Hat 5.X systems.

/etc/modprobe.d/ib_qib.conf

Specifies options for modules when added or removed
by the modprobe command. Also used for creating
aliases. The PAT write-combing option is set here.
For Red Hat 6.X systems.

/etc/modprobe.conf.local

Specifies options for modules when added or removed
by the modprobe command. Also used for creating
aliases. The PAT write-combing option is set here.
For SLES systems.

/etc/infiniband/openib.conf

The primary configuration file for InfiniPath, OFED
modules, and other modules and associated daemons.
Automatically loads additional modules or changes
IPoIB transport type.

/etc/sysconfig/infinipath Contains settings, including the one that sets the
ipath_mtrr script to run on reboot.

/etc/sysconfig/network/ifcfg-NAME Network configuration file for network interfaces
For SLES systems.

/etc/sysconfig/network-scripts/ifcfg-NAME Network configuration file for network interfaces
For Red Hat systems.

Sample and Template Files Description

/usr/share/doc/initscripts-*/sysconfig.txt
File that explains many of the entries in the
configuration files
For Red Hat systems.

Commands and Files

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
194 Doc. Number: G91902 Revision: 006US

Intel® True Scale Fabric OFED+ Host Software
July 2015 UG
Doc. Number: G91902 Revision: 006US 195

Recommended Reading

Appendix F Recommended Reading

Reference material for further reading is provided in this appendix.

F.1 References for MPI
The MPI Standard specification documents are located at:

http://www.mpi-forum.org/docs

The MPICH implementation of MPI and its documentation are located at:
http://www-unix.mcs.anl.gov/mpi/mpich/

The ROMIO distribution and its documentation are located at:
http://www.mcs.anl.gov/romio

F.2 Books for Learning MPI Programming
Gropp, William, Ewing Lusk, and Anthony Skjellum, Using MPI, Second Edition, 1999,
MIT Press, ISBN 0-262-57134-X

Gropp, William, Ewing Lusk, and Anthony Skjellum, Using MPI-2, Second Edition, 1999,
MIT Press, ISBN 0-262-57133-1

Pacheco, Parallel Programming with MPI, 1997, Morgan Kaufman Publishers,
ISBN 1-55860

F.3 Reference and Source for SLURM
The open-source resource manager designed for Linux clusters is located at:

http://www.llnl.gov/linux/slurm/

F.4 InfiniBand*

The InfiniBand* specification can be found at the InfiniBand* Trade Association (IBTA)
website:

http://www.infinibandta.org/

F.5 OpenFabrics
Information about the OpenFabrics Alliance (OFA) is located at:

http://www.openfabrics.org

http://www.mpi-forum.org/docs
http://www-unix.mcs.anl.gov/mpi/mpich
http://www.mcs.anl.gov/romio
http://www.llnl.gov/linux/slurm
http://www.infinibandta.org
http://www.openfabrics.org

Recommended Reading

Intel® True Scale Fabric OFED+ Host Software
UG July 2015
196 Doc. Number: G91902 Revision: 006US

F.6 Clusters
Gropp, William, Ewing Lusk, and Thomas Sterling, Beowulf Cluster Computing with
Linux, Second Edition, 2003, MIT Press, ISBN 0-262-69292-9

F.7 Networking
The Internet Frequently Asked Questions (FAQ) archives contain an extensive Request
for Command (RFC) section. Numerous documents on networking and configuration
can be found at:

http://www.faqs.org/rfcs/index.html

F.8 Rocks
Extensive documentation on installing Rocks and custom Rolls can be found at:

http://www.stackiq.com

F.9 Other Software Packages
Environment Modules is a popular package to maintain multiple concurrent versions of
software packages and is available from:

http://modules.sourceforge.net/

http://www.faqs.org/rfcs/index.html
http://www.stackiq.com
http://modules.sourceforge.net

	Intel® True Scale Fabric OFED+ Host Software
	Contents
	Figures
	Tables
	Revision History

	1.0 Introduction
	1.1 Overview
	1.2 Interoperability
	1.3 Intended Audience
	1.4 How this Guide is Organized
	1.5 Related Materials
	1.6 Documentation Conventions
	1.7 License Agreements
	1.8 Technical Support

	2.0 Step-by-Step Cluster Setup and MPI Usage Checklists
	2.1 Cluster Setup
	2.2 Using MPI

	3.0 True Scale Cluster Setup and Administration
	3.1 Introduction
	3.2 Installed Layout
	3.3 True Scale and OpenFabrics Driver Overview
	3.4 IPoIB Network Interface Configuration
	3.5 IPoIB Administration
	3.5.1 Stop, Start and Restart the IPoIB Driver
	3.5.2 Configure IPoIB

	3.6 IB Bonding
	3.6.1 Interface Configuration Scripts
	3.6.1.1 Red Hat Enterprise Linux*
	3.6.1.2 SuSE Linux* Enterprise Server (SLES)

	3.6.2 Verify IB Bonding is Configured

	3.7 Subnet Manager Configuration
	3.8 Intel Distributed Subnet Administration
	3.8.1 Applications that use Distributed SA
	3.8.2 Virtual Fabrics and the Distributed SA
	3.8.3 Configuring the Distributed SA
	3.8.4 Default Configuration
	3.8.5 Multiple Virtual Fabrics Example
	3.8.6 Virtual Fabrics with Overlapping Definitions
	3.8.7 Distributed SA Configuration File
	3.8.7.1 SID
	3.8.7.2 ScanFrequency
	3.8.7.3 LogFile
	3.8.7.4 Dbg
	3.8.7.5 Other Settings

	3.9 Changing the MTU Size
	3.10 Managing the True Scale Driver
	3.10.1 Configure the True Scale Driver State
	3.10.2 Start, Stop, or Restart True Scale Driver
	3.10.3 Unload the Driver/Modules Manually
	3.10.4 True Scale Driver Filesystem

	3.11 More Information on Configuring and Loading Drivers
	3.12 Performance Settings and Management Tips
	3.12.1 Performance Tuning
	3.12.1.1 Systems in General (With Either Intel or AMD CPUs)
	3.12.1.2 AMD CPU Systems
	3.12.1.3 AMD Interlagos CPU Systems
	3.12.1.4 Intel CPU Systems
	3.12.1.5 High Risk Tuning for Intel Harpertown CPUs
	3.12.1.6 Additional Driver Module Parameter Tunings Available

	3.12.2 Performance Tuning using ipath_perf_tuning Tool
	3.12.2.1 OPTIONS
	3.12.2.2 AUTOMATIC vs. INTERACTIVE MODE
	3.12.2.3 Affected Files

	3.12.3 Homogeneous Nodes
	3.12.4 Adapter and Other Settings
	3.12.5 Remove Unneeded Services

	3.13 Host Environment Setup for MPI
	3.13.1 Configuring for ssh
	3.13.1.1 Configuring ssh and sshd Using shosts.equiv
	3.13.1.2 Configuring for ssh Using ssh-agent

	3.13.2 Process Limitation with ssh

	3.14 Checking Cluster and Software Status
	3.14.1 ipath_control
	3.14.2 iba_opp_query
	3.14.3 ibstatus
	3.14.4 ibv_devinfo
	3.14.5 ipath_checkout

	4.0 Running MPI on Intel HCAs
	4.1 Introduction
	4.1.1 MPIs Packaged with Intel OFED+

	4.2 Open MPI
	4.2.1 Installation
	4.2.2 Setup
	4.2.3 Compiling Open MPI Applications
	4.2.4 Create the mpihosts File
	4.2.5 Running Open MPI Applications
	4.2.6 Further Information on Open MPI
	4.2.7 Configuring MPI Programs for Open MPI
	4.2.8 To Use Another Compiler
	4.2.8.1 Compiler and Linker Variables

	4.2.9 Process Allocation
	4.2.9.1 True Scale Hardware Contexts on the HCAs
	4.2.9.2 Optimal Assignment of PSM Processes to HCAs
	4.2.9.3 Enabling and Disabling Software Context Sharing
	4.2.9.4 Restricting True Scale Hardware Contexts in a Batch Environment
	4.2.9.5 Context Sharing Error Messages
	4.2.9.6 Running in Shared Memory Mode

	4.2.10 mpihosts File Details
	4.2.11 Using Open MPI’s mpirun
	4.2.12 Console I/O in Open MPI Programs
	4.2.13 Environment for Node Programs
	4.2.13.1 Remote Execution
	4.2.13.2 Exported Environment Variables
	4.2.13.3 Setting MCA Parameters

	4.2.14 Environment Variables
	4.2.15 Job Blocking in Case of Temporary Link Failures

	4.3 Open MPI and Hybrid MPI/OpenMP Applications
	4.4 Debugging MPI Programs
	4.4.1 MPI Errors
	4.4.2 Using Debuggers

	5.0 Using Other MPIs
	5.1 Introduction
	5.2 Installed Layout
	5.3 Open MPI
	5.4 MVAPICH
	5.4.1 Compiling MVAPICH Applications
	5.4.2 Running MVAPICH Applications
	5.4.3 Further Information on MVAPICH

	5.5 MVAPICH2
	5.5.1 Compiling MVAPICH2 Applications
	5.5.2 Running MVAPICH2 Applications
	5.5.3 Further Information on MVAPICH2

	5.6 Managing MVAPICH, and MVAPICH2 with the mpi-selector Utility
	5.7 Platform MPI 8
	5.7.1 Installation
	5.7.2 Setup
	5.7.3 Compiling Platform MPI 8 Applications
	5.7.4 Running Platform MPI 8 Applications
	5.7.5 More Information on Platform MPI 8

	5.8 Intel MPI
	5.8.1 Installation
	5.8.2 Setup
	5.8.3 Compiling Intel MPI Applications
	5.8.4 Running Intel MPI Applications
	5.8.5 Further Information on Intel MPI

	5.9 Improving Performance of Other MPIs Over IB Verbs

	6.0 SHMEM Description and Configuration
	6.1 Overview
	6.2 Interoperability
	6.3 Installation
	6.4 SHMEM Programs
	6.4.1 Basic SHMEM Program
	6.4.2 Compiling SHMEM Programs
	6.4.3 Running SHMEM Programs
	6.4.3.1 Using shmemrun
	6.4.3.2 Running programs without using shmemrun

	6.5 Intel SHMEM Relationship with MPI
	6.6 Slurm Integration
	6.6.1 Full Integration
	6.6.2 Two-step Integration
	6.6.3 No Integration

	6.7 Sizing Global Shared Memory
	6.8 Progress Model
	6.8.1 Active Progress
	6.8.2 Passive Progress
	6.8.3 Active versus Passive Progress

	6.9 Environment Variables
	6.10 Implementation Behavior
	6.11 Application Programming Interface
	6.12 SHMEM Benchmark Programs

	7.0 Virtual Fabric support in PSM
	7.1 Introduction
	7.2 Virtual Fabric Support
	7.3 Using SL and PKeys
	7.4 Using Service ID
	7.5 SL2VL mapping from the Fabric Manager
	7.6 Verifying SL2VL tables on Intel 7300 Series HCAs

	8.0 PSM Multi-rail
	8.1 User Base
	8.2 Environment Variables
	8.3 Examples of Single- and Multi-rail

	9.0 Dispersive Routing
	10.0 gPXE
	10.1 gPXE Setup
	10.1.1 Required Steps

	10.2 Preparing the DHCP Server in Linux
	10.2.1 Installing DHCP
	10.2.2 Configuring DHCP

	10.3 Netbooting Over IB
	10.3.1 Prerequisites
	10.3.2 Boot Server Setup
	10.3.3 Steps on the gPXE Client

	10.4 HTTP Boot Setup

	Appendix A Benchmark Programs
	A.1 Benchmark 1: Measuring MPI Latency Between Two Nodes
	A.2 Benchmark 2: Measuring MPI Bandwidth Between Two Nodes
	A.3 Benchmark 3: Messaging Rate Microbenchmarks
	A.3.1 OSU Multiple Bandwidth / Message Rate test (osu_mbw_mr)
	A.3.2 An Enhanced Multiple Bandwidth / Message Rate test (mpi_multibw)

	Appendix B Integration with a Batch Queuing System
	B.1 Clean Termination of MPI Processes
	B.2 Clean-up PSM Shared Memory Files

	Appendix C Troubleshooting
	C.1 Using LEDs to Check the State of the HCA
	C.2 BIOS Settings
	C.3 Kernel and Initialization Issues
	C.3.1 Driver Load Fails Due to Unsupported Kernel
	C.3.2 Rebuild or Reinstall Drivers if Different Kernel Installed
	C.3.3 InfiniPath Interrupts Not Working
	C.3.4 OpenFabrics Load Errors if ib_qib Driver Load Fails
	C.3.5 InfiniPath ib_qib Initialization Failure
	C.3.6 MPI Job Failures Due to Initialization Problems

	C.4 OpenFabrics and InfiniPath Issues
	C.4.1 Stop Infinipath Services Before Stopping/Restarting InfiniPath
	C.4.2 Manual Shutdown or Restart May Hang if NFS in Use
	C.4.3 Load and Configure IPoIB Before Loading SDP
	C.4.4 Set $IBPATH for OpenFabrics Scripts
	C.4.5 SDP Module Not Loading
	C.4.6 ibsrpdm Command Hangs when Two HCAs are Installed but Only Unit 1 is Connected to the Switch
	C.4.7 Outdated ipath_ether Configuration Setup Generates Error

	C.5 System Administration Troubleshooting
	C.5.1 Broken Intermediate Link

	C.6 Performance Issues
	C.6.1 Large Message Receive Side Bandwidth Varies with Socket Affinity on Opteron Systems
	C.6.2 Erratic Performance
	C.6.2.1 Method 1
	C.6.2.2 Immediately change the processor affinity of an IRQ

	C.6.3 Performance Warning if ib_qib Shares Interrupts with eth0

	C.7 Open MPI Troubleshooting
	C.7.1 Invalid Configuration Warning

	C.8 HPL Residual Error Failure

	Appendix D Write Combining
	D.1 Introduction
	D.2 PAT and Write Combining
	D.3 MTRR Mapping and Write Combining
	D.3.1 Edit BIOS Settings to Fix MTRR Issues
	D.3.2 Use the ipath_mtrr Script to Fix MTRR Issues

	D.4 Verify Write Combining is Working

	Appendix E Commands and Files
	E.1 Check Cluster Homogeneity with ipath_checkout
	E.2 Restarting InfiniPath
	E.3 Summary and Descriptions of Commands
	E.3.1 dmesg
	E.3.2 iba_opp_query
	E.3.2.1 Usage
	E.3.2.2 Options
	E.3.2.3 Sample output:
	E.3.2.4 Explanation of Sample Output:
	E.3.2.5 Examples:

	E.3.3 iba_hca_rev
	E.3.4 iba_manage_switch
	E.3.4.1 Usage
	E.3.4.2 Options
	E.3.4.3 Example

	E.3.5 iba_packet_capture
	E.3.5.1 Usage
	E.3.5.2 Options

	E.3.6 ibhosts
	E.3.7 ibstatus
	E.3.8 ibtracert
	E.3.9 ibv_devinfo
	E.3.10 ident
	E.3.11 ipath_checkout
	E.3.11.1 Options

	E.3.12 ipath_control
	E.3.13 ipath_mtrr
	E.3.14 ipath_pkt_test
	E.3.15 ipathstats
	E.3.16 lsmod
	E.3.17 modprobe
	E.3.18 mpirun
	E.3.19 mpi_stress
	E.3.20 rpm
	E.3.21 strings

	E.4 Common Tasks and Commands
	E.5 Summary and Descriptions of Useful Files
	E.5.1 boardversion
	E.5.2 status_str
	E.5.3 version

	E.6 Summary of Configuration Files

	Appendix F Recommended Reading
	F.1 References for MPI
	F.2 Books for Learning MPI Programming
	F.3 Reference and Source for SLURM
	F.4 InfiniBand*
	F.5 OpenFabrics
	F.6 Clusters
	F.7 Networking
	F.8 Rocks
	F.9 Other Software Packages

