
rev1.0

AMD Accelerated Parallel Processing

OpenCLUser Guide

D e c e m b e r  2 0 1 4



ii
 

© 2014 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, 
AMD Accelerated Parallel Processing, the AMD Accelerated Parallel Processing logo, ATI, 
the ATI logo, Radeon, FireStream, FirePro, Catalyst, and combinations thereof are trade-
marks of Advanced Micro Devices, Inc. Microsoft, Visual Studio, Windows, and Windows 
Vista are registered trademarks of Microsoft Corporation in the U.S. and/or other jurisdic-
tions. Other names are for informational purposes only and may be trademarks of their 
respective owners. OpenCL and the OpenCL logo are trademarks of Apple Inc. used by 
permission by Khronos.

The contents of this document are provided in connection with Advanced Micro Devices, 
Inc. (“AMD”) products. AMD makes no representations or warranties with respect to the 
accuracy or completeness of the contents of this publication and reserves the right to 
make changes to specifications and product descriptions at any time without notice. The 
information contained herein may be of a preliminary or advance nature and is subject to 
change without notice. No license, whether express, implied, arising by estoppel or other-
wise, to any intellectual property rights is granted by this publication. Except as set forth 
in AMD’s Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, 
and disclaims any express or implied warranty, relating to its products including, but not 
limited to, the implied warranty of merchantability, fitness for a particular purpose, or 
infringement of any intellectual property right.

AMD’s products are not designed, intended, authorized or warranted for use as compo-
nents in systems intended for surgical implant into the body, or in other applications 
intended to support or sustain life, or in any other application in which the failure of AMD’s 
product could create a situation where personal injury, death, or severe property or envi-
ronmental damage may occur. AMD reserves the right to discontinue or make changes to 
its products at any time without notice.

Advanced Micro Devices, Inc.
One AMD Place
P.O. Box 3453

Sunnyvale, CA 94088-3453
www.amd.com

For AMD Accelerated Parallel Processing:

URL: developer.amd.com/appsdk

Developing: developer.amd.com/

Forum: developer.amd.com/openclforum

http://www.amd.com/
http://developer.amd.com/appsdk
http://developer.amd.com/
http://developer.amd.com/openclforum


A M D  A C C E L E R A T E D P A R A L L E L  P R O C E S S I N G

Preface iii
Copyright © 2014 Advanced Micro Devices, Inc. All rights reserved.  

Preface

About This Document

This document provides a basic description of the AMD Accelerated Parallel 
Processing environment and components. It describes the basic architecture of 
compute and stream processors. This document also provides a guide for 
programmers who want to use AMD Accelerated Parallel Processing to 
accelerate their applications.

Audience

This document is intended for programmers. It assumes prior experience in 
writing code for CPUs and a basic understanding of threads (work-items). While 
a basic understanding of GPU architectures is useful, this document does not 
assume prior graphics knowledge. It further assumes an understanding of 
chapters 1, 2, and 3 of the OpenCL Specification (for the latest version, see 
http://www.khronos.org/registry/cl/ ).

Organization

This AMD Accelerated Parallel Processing document begins, in Chapter 1, with 
an overview of: the AMD Accelerated Parallel Processing programming models, 
OpenCL, and the AMD Compute Abstraction Layer (CAL). Chapter 2 discusses 
the AMD implementation of OpenCL. Chapter 3 discusses the compiling and 
running of OpenCL programs. Chapter 4 describes using the AMD CodeXL GPU 
Debugger and the GNU debugger (GDB) to debug OpenCL programs. Chapter 5 
provides information about the extension that defines the OpenCL Static C++ 
kernel language, which is a form of the ISO/IEC Programming languages C++ 
specification. Chapter 6 provides information about the features introduced in 
OpenCL 2.0. Appendix A describes the supported optional OpenCL extensions. 
Appendix B details the installable client driver (ICD) for OpenCL. Appendix C 
details the compute kernel and contrasts it with a pixel shader. Appendix C 
describes the OpenCL binary image format (BIF). Appendix D provides a 
hardware overview of pre-GCN devices. Appendix E describes the 
interoperability between OpenCL and OpenGL. Appendix F describes the new 
and deprecated functions in OpenCL 2.0. Appendix G provides information about 
the SPIR format. The last section of this book is an index.
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Conventions

The following conventions are used in this document. 

Related Documents

 The OpenCL Specification, Version 1.1, Published by Khronos OpenCL 
Working Group, Aaftab Munshi (ed.), 2010.

 The OpenCL Specification, Version 2.0, Published by Khronos OpenCL 
Working Group, Aaftab Munshi (ed.), 2013.

 AMD, R600 Technology, R600 Instruction Set Architecture, Sunnyvale, CA, 
est. pub. date 2007. This document includes the RV670 GPU instruction 
details.

 ISO/IEC 9899:TC2 - International Standard - Programming Languages - C

 Kernighan Brian W., and Ritchie, Dennis M., The C Programming Language, 
Prentice-Hall, Inc., Upper Saddle River, NJ, 1978.

 I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. 
Hanrahan, “Brook for GPUs: stream computing on graphics hardware,” ACM 
Trans. Graph., vol. 23, no. 3, pp. 777–786, 2004.

 AMD Compute Abstraction Layer (CAL) Intermediate Language (IL) 
Reference Manual. Published by AMD.

 Buck, Ian; Foley, Tim; Horn, Daniel; Sugerman, Jeremy; Hanrahan, Pat; 
Houston, Mike; Fatahalian, Kayvon. “BrookGPU” 
http://graphics.stanford.edu/projects/brookgpu/ 

 Buck, Ian. “Brook Spec v0.2”. October 31, 2003.
http://merrimac.stanford.edu/brook/brookspec-05-20-03.pdf 

 OpenGL Programming Guide, at http://www.glprogramming.com/red/ 

 Microsoft DirectX Reference Website, at http://msdn.microsoft.com/en-
us/directx

mono-spaced font A filename, file path, or code.

* Any number of alphanumeric characters in the name of a code format, parameter, 
or instruction.

[1,2) A range that includes the left-most value (in this case, 1) but excludes the right-most 
value (in this case, 2).

[1,2] A range that includes both the left-most and right-most values (in this case, 1 and 2).

{x | y} One of the multiple options listed. In this case, x or y.

0.0f
0.0

A single-precision (32-bit) floating-point value.
A double-precision (64-bit) floating-point value.

1011b A binary value, in this example a 4-bit value.

7:4 A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first.

italicized word or phrase The first use of a term or concept basic to the understanding of stream computing. 
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 GPGPU: http://www.gpgpu.org, and Stanford BrookGPU discussion forum
http://www.gpgpu.org/forums/

Contact Information
URL: developer.amd.com/appsdk

Developing: developer.amd.com/

Forum: developer.amd.com/openclforum

http://developer.amd.com/appsdk
http://developer.amd.com/
http://developer.amd.com/openclforum


A M D  A C C E L E R A T E D P A R A L L E L  P R O C E S S I N G

vi Preface
Copyright © 2014 Advanced Micro Devices, Inc. All rights reserved.   



A M D  A C C E L E R A T E D P A R A L L E L  P R O C E S S I N G

Contents vii
Copyright © 2014 Advanced Micro Devices, Inc. All rights reserved.  

Contents

Preface

Contents

Chapter 1
OpenCL Architecture and AMD Accelerated Parallel Processing

1.1 Terminology ...................................................................................................................................... 1-1

1.2 OpenCL Overview ............................................................................................................................ 1-2

1.3 Programming Model ........................................................................................................................ 1-3

1.4 Synchronization ............................................................................................................................... 1-4

1.5 Memory Architecture and Access.................................................................................................. 1-5
1.5.1 Data Share Operations ....................................................................................................1-7

1.5.2 Dataflow in Memory Hierarchy .......................................................................................1-9

1.5.3 Memory Access ..............................................................................................................1-10

1.5.4 Global Memory ...............................................................................................................1-10

1.5.5 Image Read/Write ...........................................................................................................1-10

1.6 Example Programs......................................................................................................................... 1-11
1.6.1 First Example: Simple Buffer Write .............................................................................1-11

1.6.2 Example: SAXPY Function............................................................................................1-14

1.6.3 Example: Parallel Min() Function .................................................................................1-19

Chapter 2
AMD Implementation

2.1 The AMD Accelerated Parallel Processing Implementation of OpenCL ................................... 2-1
2.1.1 Work-Item Processing .....................................................................................................2-4

2.1.2 Work-Item Creation ..........................................................................................................2-4

2.1.3 Flow Control .....................................................................................................................2-4

2.2 Hardware Overview for GCN Devices ........................................................................................... 2-6
2.2.1 Key differences between pre-GCN and GCN devices .................................................2-7

2.2.2 Key differences between Southern Islands, Sea Islands, and Volcanic Islands families
2-8

A note on hardware queues ...........................................................................................2-9

2.3 Communication Between Host and the GPU Compute Device.................................................. 2-9
2.3.1 Processing API Calls: The Command Processor ........................................................2-9

2.3.2 DMA Transfers ................................................................................................................2-10

2.3.3 Masking Visible Devices................................................................................................2-10

2.4 Wavefront Scheduling ................................................................................................................... 2-11



A M D  A C C E L E R A T E D P A R A L L E L  P R O C E S S I N G

viii Contents
Copyright © 2014 Advanced Micro Devices, Inc. All rights reserved.   

Chapter 3
Building and Running OpenCL Programs

3.1 Compiling the Host Program.......................................................................................................... 3-1
3.1.1 Compiling on Windows ...................................................................................................3-1

3.1.2 Compiling on Linux .........................................................................................................3-2

3.2 Compiling the device programs..................................................................................................... 3-2
3.2.1 Creating OpenCL program objects................................................................................3-2

Creating program objects from the OpenCL C source ..............................................3-2

Creating program objects from a pre-built binary.......................................................3-3

3.2.2 Building the program executable from the program objects .....................................3-4

Building the program in a single step ..........................................................................3-4

Compiling and linking the program separately............................................................3-6

3.3 Supported Standard OpenCL Compiler Options ......................................................................... 3-7

3.4 AMD-Developed Supplemental Compiler Options ....................................................................... 3-7

3.5 Creating device-specific binaries................................................................................................... 3-9

3.6 Command execution flow ............................................................................................................. 3-10

3.7 Running the Program .....................................................................................................................3-11
3.7.1 Creating Kernel Objects ................................................................................................3-11

3.7.2 Creating a command queue .........................................................................................3-12

3.7.3 Running a Kernel (from the host) ................................................................................3-13

3.8 A note on thread safety ................................................................................................................ 3-14

3.9 Toolchain considerations.............................................................................................................. 3-14

Chapter 4
Debugging and Profiling OpenCL

4.1 AMD CodeXL GPU Debugger ......................................................................................................... 4-1
4.1.1 AMD CodeXL features .....................................................................................................4-1

4.1.2 Downloading and installing CodeXL .............................................................................4-3

Installing on Windows .....................................................................................................4-3

Installing on Red Hat/CentOS/Fedora Linux.................................................................4-3

Installing on Ubuntu and other Debian based Linux distributions ...........................4-3

4.1.3 Using CodeXL for profiling.............................................................................................4-4

GPU Profile Mode.............................................................................................................4-4

Analyze Mode ...................................................................................................................4-8

4.2 Debugging CPU Kernels with GDB ............................................................................................. 4-10
4.2.1 Setting the Environment ...............................................................................................4-10

4.2.2 Setting the Breakpoint in an OpenCL Kernel.............................................................4-11

4.2.3 Sample GDB Session ....................................................................................................4-11

4.2.4 Notes................................................................................................................................4-12

Chapter 5
OpenCL Static C++ Programming Language

5.1 Overview ........................................................................................................................................... 5-1



A M D  A C C E L E R A T E D P A R A L L E L  P R O C E S S I N G

Contents ix
Copyright © 2014 Advanced Micro Devices, Inc. All rights reserved.  

5.1.1 Supported Features .........................................................................................................5-1

5.1.2 Unsupported Features .....................................................................................................5-2

5.1.3 Relations with ISO/IEC C++ ............................................................................................5-2

5.2 Additions and Changes to Section 5 - The OpenCL C Runtime ............................................... 5-2
5.2.1 Additions and Changes to Section 5.7.1 - Creating Kernel Objects .........................5-2

5.2.2 Passing Classes between Host and Device .................................................................5-3

5.3 Additions and Changes to Section 6 - The OpenCL 1.2 C Programming Language.............. 5-3
5.3.1 Building C++ Kernels.......................................................................................................5-3

5.3.2 Classes and Derived Classes .........................................................................................5-3

5.3.3 Namespaces......................................................................................................................5-4

5.3.4 Overloading.......................................................................................................................5-4

5.3.5 Templates ..........................................................................................................................5-5

5.3.6 Exceptions ........................................................................................................................5-6

5.3.7 Libraries ............................................................................................................................5-6

5.3.8 Dynamic Operation ..........................................................................................................5-6

5.3.9 OpenCL C Built-in Functions..........................................................................................5-6

5.4 Examples........................................................................................................................................... 5-6
5.4.1 Passing a Class from the Host to the Device and Back.............................................5-6

5.4.2 Kernel Overloading ..........................................................................................................5-7

5.4.3 Kernel Template................................................................................................................5-8

Chapter 6
OpenCL 2.0

6.1 Introduction ...................................................................................................................................... 6-1

6.2 Shared Virtual Memory (SVM) ........................................................................................................ 6-1
6.2.1 Overview............................................................................................................................6-1

6.2.2 Usage.................................................................................................................................6-3

Coarse-grained memory ..................................................................................................6-4

6.3 Generic Address Space .................................................................................................................. 6-7
6.3.1 Overview............................................................................................................................6-7

6.3.2 Usage.................................................................................................................................6-7

Generic example...............................................................................................................6-7

AMD APP SDK example ..................................................................................................6-8

6.4 Device-side enqueue and workgroup/sub-group level functions .............................................. 6-8
6.4.1 Device-side enqueue........................................................................................................6-8

6.4.2 Workgroup/subgroup-level functions ............................................................................6-9

6.4.3 Usage...............................................................................................................................6-10

Iterate until convergence ..............................................................................................6-10

Data-dependent refinement...........................................................................................6-10

Binary search using device-side enqueue..................................................................6-11

6.5 Atomics and synchronization....................................................................................................... 6-14
6.5.1 Overview..........................................................................................................................6-14

6.5.2 Usage...............................................................................................................................6-14



A M D  A C C E L E R A T E D P A R A L L E L  P R O C E S S I N G

x Contents
Copyright © 2014 Advanced Micro Devices, Inc. All rights reserved.   

Atomic Loads/Stores .....................................................................................................6-14

Atomic Compare and Exchange (CAS) .......................................................................6-15

Atomic Fetch ..................................................................................................................6-16

6.6 Pipes................................................................................................................................................ 6-17
6.6.1 Overview..........................................................................................................................6-17

6.6.2 Functions for accessing pipes.....................................................................................6-17

6.6.3 Usage...............................................................................................................................6-18

6.7 Program-scope global Variables .................................................................................................. 6-19
6.7.1 Overview..........................................................................................................................6-19

6.8 Image Enhancements .................................................................................................................... 6-20
6.8.1 Overview..........................................................................................................................6-20

6.8.2 sRGB................................................................................................................................6-20

6.8.3 Depth images..................................................................................................................6-22

6.9 Non-uniform work group size....................................................................................................... 6-23
6.9.1 Overview..........................................................................................................................6-23

6.10 Portability considerations............................................................................................................. 6-23
6.10.1 Migrating from OpenCL 1.2 to OpenCL 2.0 ................................................................6-23

6.10.2 Identifying implementation specifics...........................................................................6-24

Appendix A
OpenCL Optional Extensions

A.1 Extension Name Convention ..........................................................................................................A-1

A.2 Querying Extensions for a Platform..............................................................................................A-1

A.3 Querying Extensions for a Device.................................................................................................A-2

A.4 Using Extensions in Kernel Programs..........................................................................................A-2

A.5 Getting Extension Function Pointers ............................................................................................A-3

A.6 List of Supported Extensions that are Khronos-Approved........................................................A-3

A.7 cl_ext Extensions.........................................................................................................................A-5

A.8 AMD Vendor-Specific Extensions ..................................................................................................A-5
A.8.1 cl_amd_fp64................................................................................................................. A-5

A.8.2 cl_amd_vec3................................................................................................................. A-5

A.8.3 cl_amd_device_persistent_memory.................................................................. A-5

A.8.4 cl_amd_device_attribute_query....................................................................... A-5

cl_device_profiling_timer_offset_amd....................................................... A-5

cl_amd_device_topology........................................................................................ A-6

cl_amd_device_board_name................................................................................... A-6

A.8.5 cl_amd_compile_options ...................................................................................... A-6

A.8.6 cl_amd_offline_devices....................................................................................... A-7

A.8.7 cl_amd_event_callback.......................................................................................... A-7

A.8.8 cl_amd_popcnt ............................................................................................................ A-7

A.8.9 cl_amd_media_ops..................................................................................................... A-7

A.8.10 cl_amd_printf .......................................................................................................... A-10



A M D  A C C E L E R A T E D P A R A L L E L  P R O C E S S I N G

Contents xi
Copyright © 2014 Advanced Micro Devices, Inc. All rights reserved.  

A.8.11 cl_amd_predefined_macros................................................................................. A-11

A.8.12 cl_amd_bus_addressable_memory..................................................................... A-12

A.9 Supported Functions for cl_amd_fp64 / cl_khr_fp64.......................................................A-14

A.10 Extension Support by Device.......................................................................................................A-14

Appendix B
The OpenCL Installable Client Driver (ICD)

B.1 Overview ...........................................................................................................................................B-1

B.2 Using ICD ..........................................................................................................................................B-1

Appendix C
OpenCL Binary Image Format (BIF) v2.0

C.1 Overview ...........................................................................................................................................C-1
C.1.1 Executable and Linkable Format (ELF) Header........................................................... C-2

C.1.2 Bitness.............................................................................................................................. C-3

C.2 BIF Options.......................................................................................................................................C-3

Appendix D
Hardware overview of pre-GCN devices

Appendix E
OpenCL-OpenGL Interoperability

E.1 Under Windows ................................................................................................................................E-1
E.1.1 Single GPU Environment ............................................................................................... E-2

Creating CL Context from a GL Context...................................................................... E-2

E.1.2 Multi-GPU Environment .................................................................................................. E-4

Creating CL context from a GL context ....................................................................... E-4

E.1.3 Limitations ....................................................................................................................... E-7

E.2 Linux Operating System .................................................................................................................E-7
E.2.1 Single GPU Environment ............................................................................................... E-7

Creating CL Context from a GL Context...................................................................... E-7

E.2.2 Multi-GPU Configuration .............................................................................................. E-10

Creating CL Context from a GL Context.................................................................... E-10

E.3 Additional GL Formats Supported...............................................................................................E-13

Appendix F
New and deprecated functions in OpenCL 2.0

F.1 New built-in functions in OpenCL 2.0 ........................................................................................... F-1
F.1.1 Work Item Functions....................................................................................................... F-1

F.1.2 Integer functions ............................................................................................................. F-1

F.1.3 Synchronization Functions ............................................................................................ F-1

F.1.4 Address space qualifier functions ................................................................................ F-2

F.1.5 Atomic functions ............................................................................................................. F-2

F.1.6 Image Read and Write Functions.................................................................................. F-2



A M D  A C C E L E R A T E D P A R A L L E L  P R O C E S S I N G

xii Contents
Copyright © 2014 Advanced Micro Devices, Inc. All rights reserved.   

F.1.7 Work group functions......................................................................................................F-2

F.1.8 Pipe functions ..................................................................................................................F-3

F.1.9 Enqueueing Kernels ........................................................................................................F-3

F.1.10 Sub-groups .......................................................................................................................F-4

F.2 Deprecated built-ins ........................................................................................................................ F-4

F.3 New runtime APIs in OpenCL 2.0 .................................................................................................. F-6
F.3.1 New Types.........................................................................................................................F-6

F.3.2 New Macros ......................................................................................................................F-6

F.3.3 New API calls....................................................................................................................F-8

F.4 Deprecated runtimes ....................................................................................................................... F-8

Appendix G
Standard Portable Intermediate Representation (SPIR)

G.1 Sample consumption of SPIR binaries .........................................................................................G-1

Index



A M D  A C C E L E R A T E D P A R A L L E L  P R O C E S S I N G

Contents xiii
Copyright © 2014 Advanced Micro Devices, Inc. All rights reserved.  

Figures

1.1 OpenCL Programming Model ..................................................................................................1-3

1.2 Interrelationship of Memory Domains for Southern Islands Devices .....................................1-6

1.3 Dataflow between Host and GPU ...........................................................................................1-6

1.4 High-Level Memory Configuration ...........................................................................................1-8

1.5 Memory Hierarchy Dataflow ....................................................................................................1-9

2.1 AMD Accelerated Parallel Processing Software Ecosystem ..................................................2-1

2.2 Simplified Mapping of OpenCL onto AMD Accelerated Parallel Processing .........................2-2

2.3 Work-Item Grouping Into Work-Groups and Wavefronts ........................................................2-3

2.4 Generalized AMD GPU Compute Device Structure for GCN Devices...................................2-6

2.5 AMD Radeon™ HD 79XX Device Partial Block Diagram ......................................................2-7

2.6 Simplified Execution Of Wavefront On A Single Compute Unit ...........................................2-11

2.7 Compute Unit Stall Due to Data Dependency ......................................................................2-12

3.1 Runtime processing structure ................................................................................................3-11

4.1 AMD CodeXL User Interface...................................................................................................4-2

4.2 CodeXL API Trace...................................................................................................................4-4

4.3 CodeXL Timeline Visualization ................................................................................................4-5

4.4 CodeXL Summary Page ..........................................................................................................4-5

4.5 CodeXL Kernel Occupancy .....................................................................................................4-6

4.6 CodeXL Performance Counter ................................................................................................4-7

4.7 Highlighting Keywords in CodeXL ...........................................................................................4-8

4.8 Summary of OpenCL Options in CodeXL...............................................................................4-9

4.9 Viewing IL and ISA Compilation Results in CodeXL ..............................................................4-9

4.10 CodeXL Statistics Tab............................................................................................................4-10

6.1 GPU Processing with and without SVM Comparison .............................................................6-6

6.2 Binary Search with and without Device-side Enqueue Comparison ....................................6-13

A.1 Peer-to-Peer Transfers Using the cl_amd_bus_addressable_memory Extension .............. A-13

D.1 Generalized AMD GPU Compute Device Structure............................................................... D-2

D.2 Simplified Block Diagram of an Evergreen-Family GPU ....................................................... D-3



A M D  A C C E L E R A T E D P A R A L L E L  P R O C E S S I N G

xiv Contents
Copyright © 2014 Advanced Micro Devices, Inc. All rights reserved.   



A M D  A C C E L E R A T E D P A R A L L E L  P R O C E S S I N G

Contents xv
Copyright © 2013 Advanced Micro Devices, Inc. All rights reserved.  

Tables

A.1 Extension Support for AMD GPU Devices 1 ....................................................................... A-14

A.2 Extension Support for Older AMD GPUs and CPUs........................................................... A-15

C.1 ELF Header Fields ................................................................................................................ C-2

E.1 AMD-Supported GL Formats ................................................................................................ E-14



A M D  A C C E L E R A T E D P A R A L L E L  P R O C E S S I N G

xvi Contents
Copyright © 2013 Advanced Micro Devices, Inc. All rights reserved.   



A M D  A C C E L E R A T E D P A R A L L E L  P R O C E S S I N G

AMD Accelerated Parallel Processing - OpenCL User Guide 1-1
Copyright © 2014 Advanced Micro Devices, Inc. All rights reserved.   

Chapter 1
OpenCL Architecture and AMD 
Accelerated Parallel Processing

This chapter provides a general software and hardware overview of the AMD 
Accelerated Parallel Processing implementation of the OpenCL standard. It 
explains the memory structure and gives simple programming examples.

1.1 Terminology

Term Description

compute kernel To define a compute kernel, it is first necessary to define a kernel. A 
kernel is a small unit of execution that performs a clearly defined function 
and that can be executed in parallel. Such a kernel can be executed on 
each element of an input stream (called an NDRange), or simply at each 
point in an arbitrary index space. A kernel is analogous and, on some 
devices identical, to what graphics programmers call a shader program. 
This kernel is not to be confused with an OS kernel, which controls 
hardware. The most basic form of an NDRange is simply mapped over 
input data and produces one output item for each input tuple. 
Subsequent extensions of the basic model provide random-access 
functionality, variable output counts, and reduction/accumulation 
operations. Kernels are specified using the kernel keyword.

A compute kernel is a specific type of kernel that is not part of the 
traditional graphics pipeline. The compute kernel type can be used for 
graphics, but its strength lies in using it for non-graphics fields such as 
physics, AI, modeling, HPC, and various other computationally intensive 
applications. 

In a compute kernel, the work-item spawn order is sequential. This 
means that on a chip with N work-items per wavefront, the first N work-
items go to wavefront 1, the second N work-items go to wavefront 2, etc. 
Thus, the work-item IDs for wavefront K are in the range (K•N) to 
((K+1)•N) - 1.
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1.2 OpenCL Overview

The OpenCL programming model consists of producing complicated task graphs 
from data-parallel execution nodes.

In a given data-parallel execution, commonly known as a kernel launch, a 
computation is defined in terms of a sequence of instructions that executes at 
each point in an N-dimensional index space. It is a common, though by not 
required, formulation of an algorithm that each computation index maps to an 
element in an input data set.

The OpenCL data-parallel programming model is hierarchical. The hierarchical 
subdivision can be specified in two ways:

 Explicitly - the developer defines the total number of work-items to execute 
in parallel, as well as the division of work-items into specific work-groups. 

 Implicitly - the developer specifies the total number of work-items to execute 
in parallel, and OpenCL manages the division into work-groups.

OpenCL's API also supports the concept of a task dispatch. This is equivalent to 
executing a kernel on a compute device with a work-group and NDRange 
containing a single work-item. Parallelism is expressed using vector data types 
implemented by the device, enqueuing multiple tasks, and/or enqueuing native 
kernels developed using a programming model orthogonal to OpenCL.

wavefronts and 
work-groups

Wavefronts and work-groups are two concepts relating to compute 
kernels that provide data-parallel granularity. On most AMD GPUs, a 
wavefront has 64 work-items. A wavefront is the lowest level that flow 
control can affect. This means that if two work-items inside of a 
wavefront go divergent paths of flow control, all work-items in the 
wavefront go to both paths of flow control.

Grouping is a higher-level granularity of data parallelism that is enforced 
in software, not hardware. Synchronization points in a kernel guarantee 
that all work-items in a work-group reach that point (barrier) in the code 
before the next statement is executed. 

Work-groups are composed of wavefronts. Best performance is attained 
when the group size is an integer multiple of the wavefront size.

local data store 
(LDS)

The LDS is a high-speed, low-latency memory private to each compute 
unit. It is a full gather/scatter model: a work-group can write anywhere 
in its allocated space. This model is unchanged for the AMD Radeon™ 
HD 7XXX series. The constraints of the current LDS model are:
 The LDS size is allocated per work-group. Each work-group specifies 

how much of the LDS it requires. The hardware scheduler uses this 
information to determine which work groups can share a compute unit.

 Data can only be shared within work-items in a work-group. 
 Memory accesses outside of the work-group result in undefined 

behavior.

Term Description
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1.3 Programming Model

The OpenCL programming model is based on the notion of a host device, 
supported by an application API, and a number of devices connected through a 
bus. These are programmed using OpenCL C. The host API is divided into 
platform and runtime layers. OpenCL C is a C-like language with extensions for 
parallel programming such as memory fence operations and barriers. Figure 1.1 
illustrates this model with queues of commands, reading/writing data, and 
executing kernels for specific devices. 

Figure 1.1 OpenCL Programming Model

The devices are capable of running data- and task-parallel work. A kernel can be 
executed as a function of multi-dimensional domains of indices. Each element is 
called a work-item; the total number of indices is defined as the global work-size. 
The global work-size can be divided into sub-domains, called work-groups, and 
individual work-items within a group can communicate through global or locally 
shared memory. Work-items are synchronized through barrier or fence 
operations. Figure 1.1 is a representation of the host/device architecture with a 
single platform, consisting of a GPU and a CPU.

An OpenCL application is built by first querying the runtime to determine which 
platforms are present. There can be any number of different OpenCL 
implementations installed on a single system. The desired OpenCL platform can 
be selected by matching the platform vendor string to the desired vendor name, 
such as “Advanced Micro Devices, Inc.” The next step is to create a context. As 
shown in Figure 1.1, an OpenCL context has associated with it a number of 
compute devices (for example, CPU or GPU devices),. Within a context, OpenCL 
guarantees a relaxed consistency between these devices. This means that 
memory objects, such as buffers or images, are allocated per context; but 
changes made by one device are only guaranteed to be visible by another device 
at well-defined synchronization points. For this, OpenCL provides events, with the 
ability to synchronize on a given event to enforce the correct order of execution. 

Global/Constant Memory

_kernel foo(...) {_kernel foo(...) {

Wi0 Wi1 Wi3 Win

Local Memory

Wi0 Wi1 Wi3 Win

Local Memory

barrier(...)

} }
Context

Queue Queue
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Many operations are performed with respect to a given context; there also are 
many operations that are specific to a device. For example, program compilation 
and kernel execution are done on a per-device basis. Performing work with a 
device, such as executing kernels or moving data to and from the device’s local 
memory, is done using a corresponding command queue. A command queue is 
associated with a single device and a given context; all work for a specific device 
is done through this interface. Note that while a single command queue can be 
associated with only a single device, there is no limit to the number of command 
queues that can point to the same device. For example, it is possible to have 
one command queue for executing kernels and a command queue for managing 
data transfers between the host and the device.

Most OpenCL programs follow the same pattern. Given a specific platform, select 
a device or devices to create a context, allocate memory, create device-specific 
command queues, and perform data transfers and computations. Generally, the 
platform is the gateway to accessing specific devices, given these devices and 
a corresponding context, the application is independent of the platform. Given a 
context, the application can:

 Create one or more command queues.

 Create programs to run on one or more associated devices.

 Create kernels within those programs.

 Allocate memory buffers or images, either on the host or on the device(s). 
(Memory can be copied between the host and device.)

 Write data to the device.

 Submit the kernel (with appropriate arguments) to the command queue for 
execution.

 Read data back to the host from the device.

The relationship between context(s), device(s), buffer(s), program(s), kernel(s), 
and command queue(s) is best seen by looking at sample code. For an example, 
see the HelloWorld sample in the AMD APP SDK.

1.4 Synchronization

The two domains of synchronization in OpenCL are work-items in a single work-
group and command-queue(s) in a single context. Work-group barriers enable 
synchronization of work-items in a work-group. Each work-item in a work-group 
must first execute the barrier before executing any instruction beyond this barrier. 
Either all of, or none of, the work-items in a work-group must encounter the 
barrier. A barrier or mem_fence operation does not have global scope, but is 
relevant only to the local workgroup on which they operate. 

There are two types of synchronization between commands in a command-
queue:
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 command-queue barrier - enforces ordering within a single queue. Any 
resulting changes to memory are available to the following commands in the 
queue.

 events - enforces ordering between, or within, queues. Enqueued commands 
in OpenCL return an event identifying the command as well as the memory 
object updated by it. This ensures that following commands waiting on that 
event see the updated memory objects before they execute.

OpenCL 2.0 provides additional synchronization options. For an overview, see 
Section 6.5, “Atomics and synchronization.”.

1.5 Memory Architecture and Access

OpenCL has four memory domains: private, local, global, and constant; the AMD 
Accelerated Parallel Processing system also recognizes host (CPU) and PCI 
Express (PCIe) memory.

Figure 1.2 illustrates the interrelationship of the memories. 

Memory Type Description

private Specific to a work-item; it is not visible to other work-items.

local Specific to a work-group; accessible only by work-items belonging to that 
work-group.

global Accessible to all work-items executing in a context, as well as to the host 
(read, write, and map commands).

constant Read-only region for host-allocated and -initialized objects that are not 
changed during kernel execution.

host (CPU) Host-accessible region for an application’s data structures and program 
data.

PCIe Part of host (CPU) memory accessible from, and modifiable by, the host 
program and the GPU compute device. Modifying this memory requires 
synchronization between the GPU compute device and the CPU.
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Figure 1.2 Interrelationship of Memory Domains for Southern Islands 
Devices

Figure 1.3 illustrates the standard dataflow between host (CPU) and GPU.

Figure 1.3 Dataflow between Host and GPU

There are two ways to copy data from the host to the GPU compute device 
memory:

 Implicitly by using clEnqueueMapBuffer and clEnqueueUnMapMemObject.

 Explicitly through clEnqueueReadBuffer and clEnqueueWriteBuffer 
(clEnqueueReadImage, clEnqueueWriteImage.).
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When using these interfaces, it is important to consider the amount of copying 
involved. There is a two-copy processes: between host and PCIe, and between 
PCIe and GPU compute device.

With proper memory transfer management and the use of system pinned 
memory (host/CPU memory remapped to the PCIe memory space), copying 
between host (CPU) memory and PCIe memory can be skipped. 

Double copying lowers the overall system memory bandwidth. In GPU compute 
device programming, pipelining and other techniques help reduce these 
bottlenecks. See the AMD OpenCL Optimization Reference Guide for more 
specifics about optimization techniques.

1.5.1 Data Share Operations

Local data share (LDS) is a very low-latency, RAM scratchpad for temporary data 
located within each compute unit. The programmer explicitly controls all 
accesses to the LDS. The LDS can thus provide efficient memory access when 
used as a software cache for predictable re-use of data (such as holding 
parameters for pixel shader parameter interpolation), as a data exchange 
machine for the work-items of a work-group, or as a cooperative way to enable 
more efficient access to off-chip memory. 

The high-speed write-to-read re-use of the memory space (full gather/read/load 
and scatter/write/store operations) is especially useful in pre-GCN devices with 
read-only caches. LDS offers at least one order of magnitude higher effective 
bandwidth than direct, uncached global memory. 

Figure 1.4 shows the conceptual framework of the LDS is integration into the 
memory of AMD GPUs using OpenCL.
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Figure 1.4 High-Level Memory Configuration

Physically located on-chip, directly next to the ALUs, the LDS is approximately 
one order of magnitude faster than global memory (assuming no bank conflicts).

In pre-GCN devices, there are 32 kB memory per compute unit, segmented into 
32 or 16 banks (depending on the GPU type) of 1 k dwords (for 32 banks) or 2 k 
dwords (for 16 banks). Each bank is a 256x32 two-port RAM (1R/1W per clock 
cycle). Dwords are placed in the banks serially, but all banks can execute a store 
or load simultaneously. One work-group can request up to 32 kB memory. Reads 
across wavefront are dispatched over four cycles in waterfall.

GCN devices contain 64 kB memory per compute unit and allow up to a 
maximum of 32 kB per workgroup.

The high bandwidth of the LDS memory is achieved not only through its proximity 
to the ALUs, but also through simultaneous access to its memory banks. Thus, 
it is possible to concurrently execute 32 write or read instructions, each nominally 
32-bits; extended instructions, read2/write2, can be 64-bits each. If, however, 
more than one access attempt is made to the same bank at the same time, a 
bank conflict occurs. In this case, for indexed and atomic operations, hardware 
prevents the attempted concurrent accesses to the same bank by turning them 
into serial accesses. This decreases the effective bandwidth of the LDS. For 
maximum throughput (optimal efficiency), therefore, it is important to avoid bank 
conflicts. A knowledge of request scheduling and address mapping is key to 
achieving this.

Compute Device

Host

Global/Constant Memory
Frame Buffer

LDS

Work-Group

Private
Memory
Work-
Item

Private
Memory
Work-
Item

LDS

Work-Group

Private
Memory
Work-
Item

Private
Memory
Work-
Item

Host Memory



A M D  A C C E L E R A T E D P A R A L L E L  P R O C E S S I N G

1.5 Memory Architecture and Access 1-9
Copyright © 2014 Advanced Micro Devices, Inc. All rights reserved.  

1.5.2 Dataflow in Memory Hierarchy

Figure 1.5 is a conceptual diagram of the dataflow within the memory structure 
in pre-GCN devices.

Figure 1.5 Memory Hierarchy Dataflow

To load data into LDS from global memory, it is read from global memory and 
placed into the work-item’s registers; then, a store is performed to LDS. Similarly, 
to store data into global memory, data is read from LDS and placed into the work-
item’s registers, then placed into global memory. To make effective use of the 
LDS, an algorithm must perform many operations on what is transferred between 
global memory and LDS. It also is possible to load data from a memory buffer 
directly into LDS, bypassing VGPRs.

LDS atomics are performed in the LDS hardware. (Thus, although ALUs are not 
directly used for these operations, latency is incurred by the LDS executing this 
function.) If the algorithm does not require write-to-read reuse (the data is read 
only), it usually is better to use the image dataflow (see right side of Figure 1.5) 
because of the cache hierarchy.

Actually, buffer reads may use L1 and L2. When caching is not used for a buffer, 
reads from that buffer bypass L2. After a buffer read, the line is invalidated; then, 
on the next read, it is read again (from the same wavefront or from a different 
clause). After a buffer write, the changed parts of the cache line are written to 
memory. 

Buffers and images are written through the texture L2 cache, but this is flushed 
immediately after an image write.

In GCN devices, both reads and writes happen through L1 and L2.

The data in private memory is first placed in registers. If more private memory is 
used than can be placed in registers, or dynamic indexing is used on private 
arrays, the overflow data is placed (spilled) into scratch memory. Scratch memory 
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is a private subset of global memory, so performance can be dramatically 
degraded if spilling occurs.

Global memory can be in the high-speed GPU memory (VRAM) or in the host 
memory, which is accessed by the PCIe bus. A work-item can access global 
memory either as a buffer or a memory object. Buffer objects are generally read 
and written directly by the work-items. Data is accessed through the L2 and L1 
data caches on the GPU. This limited form of caching provides read coalescing 
among work-items in a wavefront. Similarly, writes are executed through the 
texture L2 cache.

Global atomic operations are executed through the texture L2 cache. Atomic 
instructions that return a value to the kernel are handled similarly to fetch 
instructions: the kernel must use S_WAITCNT to ensure the results have been 
written to the destination GPR before using the data.

1.5.3 Memory Access

Using local memory (known as local data store, or LDS, as shown in Figure 1.2) 
typically is an order of magnitude faster than accessing host memory through 
global memory (VRAM), which is one order of magnitude faster again than PCIe. 
However, stream cores do not directly access memory; instead, they issue 
memory requests through dedicated hardware units. When a work-item tries to 
access memory, the work-item is transferred to the appropriate fetch unit. The 
work-item then is deactivated until the access unit finishes accessing memory. 
Meanwhile, other work-items can be active within the compute unit, contributing 
to better performance. The data fetch units handle three basic types of memory 
operations: loads, stores, and streaming stores. GPU compute devices can store 
writes to random memory locations using global buffers.

1.5.4 Global Memory

The global memory lets applications read from, and write to, arbitrary locations 
in memory. When using global memory, such read and write operations from the 
stream kernel are done using regular GPU compute device instructions with the 
global memory used as the source or destination for the instruction. The 
programming interface is similar to load/store operations used with CPU 
programs, where the relative address in the read/write buffer is specified. 

When using a global memory, each work-item can write to an arbitrary location 
within it. Global memory use a linear layout. If consecutive addresses are written, 
the compute unit issues a burst write for more efficient memory access. Only 
read-only buffers, such as constants, are cached. 

1.5.5 Image Read/Write

Image reads are done by addressing the desired location in the input memory 
using the fetch unit. The fetch units can process either 1D or 2 D addresses. 
These addresses can be normalized or un-normalized. Normalized coordinates 
are between 0.0 and 1.0 (inclusive). For the fetch units to handle 2D addresses 
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and normalized coordinates, pre-allocated memory segments must be bound to 
the fetch unit so that the correct memory address can be computed. For a single 
kernel invocation, up to 128 images can be bound at once for reading, and eight 
for writing. The maximum number of addresses is 8192x8192 for Evergreen and 
Northern Islands-based devices, 16384x16384 for SI-based products.

Image reads are cached through the texture system (corresponding to the L2 and 
L1 caches). 

1.6 Example Programs

The following subsections provide simple programming examples with 
explanatory comments.

1.6.1 First Example: Simple Buffer Write

This sample shows a minimalist OpenCL C program that sets a given buffer to 
some value. It illustrates the basic programming steps with a minimum amount 
of code. This sample contains no error checks and the code is not generalized. 
Yet, many simple test programs might look very similar. The entire code for this 
sample is provided at the end of this section.

1. The host program must select a platform, which is an abstraction for a given 
OpenCL implementation. Implementations by multiple vendors can coexist on 
a host, and the sample uses the first one available. 

2. A device id for a GPU device is requested. A CPU device could be requested 
by using CL_DEVICE_TYPE_CPU instead. The device can be a physical device, 
such as a given GPU, or an abstracted device, such as the collection of all 
CPU cores on the host. 

3. On the selected device, an OpenCL context is created. A context ties 
together a device, memory buffers related to that device, OpenCL programs, 
and command queues. Note that buffers related to a device can reside on 
either the host or the device. Many OpenCL programs have only a single 
context, program, and command queue.

4. Before an OpenCL kernel can be launched, its program source is compiled, 
and a handle to the kernel is created. 

5. A memory buffer is allocated in the context.

6. The kernel is launched. While it is necessary to specify the global work size, 
OpenCL determines a good local work size for this device. Since the kernel 
was launch asynchronously, clFinish() is used to wait for completion.

7. The data is mapped to the host for examination. Calling 
clEnqueueMapBuffer ensures the visibility of the buffer on the host, which in 
this case probably includes a physical transfer. Alternatively, we could use 
clEnqueueWriteBuffer(), which requires a pre-allocated host-side buffer.
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Example Code 1 – 

//
// Copyright (c) 2010 Advanced Micro Devices, Inc. All rights reserved.
//

// A minimalist OpenCL program.

#include <CL/cl.h>
#include <stdio.h>

#define NWITEMS 512

// A simple memset kernel

const char *source =
"__kernel void memset( __global uint *dst )                                  \n"
"{                                                                           \n"
"   dst[get_global_id(0)] = get_global_id(0);                                \n"
"}                                                                           \n";

int main(int argc, char ** argv)
{
   // 1. Get a platform.

   cl_platform_id platform;
   
   clGetPlatformIDs( 1, &platform, NULL );

    // 2. Find a gpu device.

   cl_device_id device;
   
   clGetDeviceIDs( platform, CL_DEVICE_TYPE_GPU,
                             1,
                             &device,
                             NULL);
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//

// Copyright (c) 2010 Advanced Micro Devices, Inc. All rights reserved.
//

// A minimalist OpenCL program.

#include <CL/cl.h>
#include <stdio.h>

#define NWITEMS 512

// A simple memset kernel

const char *source =
"__kernel void memset( __global uint *dst )                                  \n"
"{                                                                           \n"
"   dst[get_global_id(0)] = get_global_id(0);                                \n"
"}                                                                           \n";

int main(int argc, char ** argv)
{
   // 1. Get a platform.

   cl_platform_id platform;
   
   clGetPlatformIDs( 1, &platform, NULL );

    // 2. Find a gpu device.

   cl_device_id device;
   
   clGetDeviceIDs( platform, CL_DEVICE_TYPE_GPU,
                             1,
                             &device,
                             NULL);

   // 3. Create a context and command queue on that device.

   cl_context context = clCreateContext( NULL,
                                         1,
                                         &device,
                                         NULL, NULL, NULL);

   cl_command_queue queue = clCreateCommandQueue( context,
                                                  device,
                                                  0, NULL );

   // 4. Perform runtime source compilation, and obtain kernel entry point.

   cl_program program = clCreateProgramWithSource( context,
                                                   1,
                                                   &source,
                                                   NULL, NULL );

   clBuildProgram( program, 1, &device, NULL, NULL, NULL );

   cl_kernel kernel = clCreateKernel( program, "memset", NULL );

   // 5. Create a data buffer.

   cl_mem buffer = clCreateBuffer( context,
                                   CL_MEM_WRITE_ONLY,
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1.6.2 Example: SAXPY Function

This section provides an introductory sample for beginner-level OpenCL 
programmers using C++ bindings. 

The sample implements the SAXPY function (Y = aX + Y, where X and Y are 
vectors, and a is a scalar). The full code is reproduced at the end of this section. 
 It uses C++ bindings for OpenCL. These bindings are available in the CL/cl.hpp 
file in the SDK available for AMD Accelerated Parallel Processing; they also are 
downloadable from the Khronos website: http://www.khronos.org/registry/cl .

The following steps guide you through this example.

1. Enable error checking through the exception handling mechanism in the C++ 
bindings by using the following define.

#define __CL_ENABLE_EXCEPTIONS

This removes the need to error check after each OpenCL call. If there is an 
error, the C++ bindings code throw an exception that is caught at the end of 
the try block, where we can clean up the host memory allocations. In this 
example, the C++ objects representing OpenCL resources (cl::Context, 
cl::CommandQueue, etc.) are declared as automatic variables, so they do not 

// 6. Launch the kernel. Let OpenCL pick the local work size.

   size_t global_work_size = NWITEMS;

   clSetKernelArg(kernel, 0, sizeof(buffer), (void*) &buffer);

   clEnqueueNDRangeKernel( queue,
                           kernel,
                           1,
                           NULL,
                           &global_work_size,
                           NULL, 0, NULL, NULL);

   clFinish( queue );

   // 7. Look at the results via synchronous buffer map.

   cl_uint *ptr;
   ptr = (cl_uint *) clEnqueueMapBuffer( queue,
                                         buffer,
                                         CL_TRUE,
                                         CL_MAP_READ,
                                         0,
                                         NWITEMS * sizeof(cl_uint),
                                         0, NULL, NULL, NULL );

   int i;

   for(i=0; i < NWITEMS; i++)
      printf("%d %d\n", i, ptr[i]);

   return 0;
}
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need to be released. If an OpenCL call returns an error, the error code is 
defined in the CL/cl.h file.

2. The kernel is very simple: each work-item, i, does the SAXPY calculation for 
its corresponding elements Y[i] = aX[i] + Y[i]. Both X and Y vectors are stored 
in global memory; X is read-only, Y is read-write.

__kernel void saxpy(const __global float * X,
                    __global float * Y,
                    const float a)
{
    uint gid = get_global_id(0);    
    Y[gid] = a* X[gid] + Y[gid];
}

3. List all platforms on the machine, then select one.

cl::Platform::get(&platforms);

4. Create an OpenCL context on that platform.

cl_context_properties cps[3] = { CL_CONTEXT_PLATFORM,
(cl_context_properties)(*iter)(), 0 };

context = cl::Context(CL_DEVICE_TYPE_GPU, cps);

5. Get OpenCL devices from the context.

devices = context.getInfo<CL_CONTEXT_DEVICES>();

6. Create an OpenCL command queue.

queue = cl::CommandQueue(context, devices[0]);

7. Create two buffers, corresponding to the X and Y vectors. Ensure the host-
side buffers, pX and pY, are allocated and initialized. The 
CL_MEM_COPY_HOST_PTR flag instructs the runtime to copy over the 
contents of the host pointer pX in order to initialize the buffer bufX. The bufX 
buffer uses the CL_MEM_READ_ONLY flag, while bufY requires the 
CL_MEM_READ_WRITE flag.

bufX = cl::Buffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
sizeof(cl_float) * length, pX);

8. Create a program object from the kernel source string, build the program for 
our devices, and create a kernel object corresponding to the SAXPY kernel. 
(At this point, it is possible to create multiple kernel objects if there are more 
than one.)

cl::Program::Sources sources(1, std::make_pair(kernelStr.c_str(),
kernelStr.length()));

program = cl::Program(context, sources);
program.build(devices);
kernel = cl::Kernel(program, "saxpy");

9. Enqueue the kernel for execution on the device (GPU in our example). 

Set each argument individually in separate kernel.setArg() calls. The 
arguments, do not need to be set again for subsequent kernel enqueue calls. 
Reset only those arguments that are to pass a new value to the kernel. Then, 
enqueue the kernel to the command queue with the appropriate global and 
local work sizes.
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kernel.setArg(0, bufX);
kernel.setArg(1, bufY);
kernel.setArg(2, a);
queue.enqueueNDRangeKernel(kernel, cl::NDRange(),

cl::NDRange(length), cl::NDRange(64));

10. Read back the results from bufY to the host pointer pY. We will make this a 
blocking call (using the CL_TRUE argument) since we do not want to proceed 
before the kernel has finished execution and we have our results back.

queue.enqueueReadBuffer(bufY, CL_TRUE, 0, length * sizeof(cl_float), 
pY);

11. Clean up the host resources (pX and pY). OpenCL resources is cleaned up 
by the C++ bindings support code.

The catch(cl::Error err) block handles exceptions thrown by the C++ 
bindings code. If there is an OpenCL call error, it prints out the name of the call 
and the error code (codes are defined in CL/cl.h). If there is a kernel compilation 
error, the error code is CL_BUILD_PROGRAM_FAILURE, in which case it is 
necessary to print out the build log.

Example Code 2 – 

#define __CL_ENABLE_EXCEPTIONS

#include <CL/cl.hpp>
#include <string>
#include <iostream>
#include <string>

using std::cout;
using std::cerr;
using std::endl;
using std::string;

/////////////////////////////////////////////////////////////////
// Helper function to print vector elements
/////////////////////////////////////////////////////////////////
void printVector(const std::string arrayName, 
                 const cl_float * arrayData, 
                 const unsigned int length)
{
    int numElementsToPrint = (256 < length) ? 256 : length;
    cout << endl << arrayName << ":" << endl;
    for(int i = 0; i < numElementsToPrint; ++i)
        cout << arrayData[i] << " ";
    cout << endl;
}

/////////////////////////////////////////////////////////////////
// Globals 
/////////////////////////////////////////////////////////////////
int length        = 256;
cl_float * pX     = NULL;
cl_float * pY     = NULL;
cl_float a        = 2.f;

std::vector<cl::Platform> platforms;
cl::Context        context;
std::vector<cl::Device> devices;
cl::CommandQueue   queue;
cl::Program        program;
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cl::Kernel         kernel;
cl::Buffer         bufX;
cl::Buffer         bufY;

/////////////////////////////////////////////////////////////////
// The saxpy kernel
/////////////////////////////////////////////////////////////////
string kernelStr    = 
    "__kernel void saxpy(const __global float * x,\n"
    "                    __global float * y,\n"
    "                    const float a)\n"
    "{\n"
    "    uint gid = get_global_id(0);\n"
    "    y[gid] = a* x[gid] + y[gid];\n"
    "}\n";

/////////////////////////////////////////////////////////////////
// Allocate and initialize memory on the host 
/////////////////////////////////////////////////////////////////
void initHost()
{
    size_t sizeInBytes = length * sizeof(cl_float);
    pX = (cl_float *) malloc(sizeInBytes);
    if(pX == NULL)
        throw(string("Error: Failed to allocate input memory on host\n"));

    pY = (cl_float *) malloc(sizeInBytes);
    if(pY == NULL)
        throw(string("Error: Failed to allocate input memory on host\n"));

    for(int i = 0; i < length; i++)
    {
        pX[i] = cl_float(i);
        pY[i] = cl_float(length-1-i);
    }

    printVector("X", pX, length);
    printVector("Y", pY, length);
}

/////////////////////////////////////////////////////////////////
// Release host memory
/////////////////////////////////////////////////////////////////
void cleanupHost()
{
    if(pX)
    {
        free(pX);
        pX = NULL;
    }
    if(pY != NULL)
    {
        free(pY);
        pY = NULL;
    }
}

void
main(int argc, char * argv[])

{
    try
    {
        /////////////////////////////////////////////////////////////////
        // Allocate and initialize memory on the host 
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        /////////////////////////////////////////////////////////////////
        initHost();

        /////////////////////////////////////////////////////////////////
        // Find the platform
        /////////////////////////////////////////////////////////////////
        cl::Platform::get(&platforms);
        std::vector<cl::Platform>::iterator iter;
        for(iter = platforms.begin(); iter != platforms.end(); ++iter)
        {

if(!strcmp((*iter).getInfo<CL_PLATFORM_VENDOR>().c_str(), 
"Advanced Micro Devices, Inc."))

{
break;
} }

        /////////////////////////////////////////////////////////////////
        // Create an OpenCL context
        /////////////////////////////////////////////////////////////////
        cl_context_properties cps[3] = { CL_CONTEXT_PLATFORM, 
(cl_context_properties)(*iter)(), 0 };
        context = cl::Context(CL_DEVICE_TYPE_GPU, cps);

        /////////////////////////////////////////////////////////////////
        // Detect OpenCL devices
        /////////////////////////////////////////////////////////////////
        devices = context.getInfo<CL_CONTEXT_DEVICES>();

        /////////////////////////////////////////////////////////////////
        // Create an OpenCL command queue
        /////////////////////////////////////////////////////////////////
        queue = cl::CommandQueue(context, devices[0]);

        /////////////////////////////////////////////////////////////////
        // Create OpenCL memory buffers
        /////////////////////////////////////////////////////////////////
        bufX = cl::Buffer(context,
                          CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
                          sizeof(cl_float) * length,
                          pX);
        bufY = cl::Buffer(context,
                          CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,
                          sizeof(cl_float) * length,
                          pY);

        /////////////////////////////////////////////////////////////////
        // Load CL file, build CL program object, create CL kernel object
        /////////////////////////////////////////////////////////////////
        cl::Program::Sources sources(1, std::make_pair(kernelStr.c_str(),

kernelStr.length()));
        program = cl::Program(context, sources);
        program.build(devices);
        kernel = cl::Kernel(program, "saxpy");

        /////////////////////////////////////////////////////////////////
        // Set the arguments that will be used for kernel execution
        /////////////////////////////////////////////////////////////////
        kernel.setArg(0, bufX);
        kernel.setArg(1, bufY);
        kernel.setArg(2, a);

        /////////////////////////////////////////////////////////////////
        // Enqueue the kernel to the queue
        // with appropriate global and local work sizes
        /////////////////////////////////////////////////////////////////
        queue.enqueueNDRangeKernel(kernel, cl::NDRange(),
                                    cl::NDRange(length), cl::NDRange(64));
                                    
        /////////////////////////////////////////////////////////////////
        // Enqueue blocking call to read back buffer Y
        /////////////////////////////////////////////////////////////////
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        queue.enqueueReadBuffer(bufY, CL_TRUE, 0, length *
sizeof(cl_float), pY);

        printVector("Y", pY, length);
        
        /////////////////////////////////////////////////////////////////
        // Release host resources
        /////////////////////////////////////////////////////////////////
        cleanupHost();
    }
    catch (cl::Error err)
    {
        /////////////////////////////////////////////////////////////////
        // Catch OpenCL errors and print log if it is a build error
        /////////////////////////////////////////////////////////////////
        cerr << "ERROR: " << err.what() << "(" << err.err() << ")" << 

endl;
        if (err.err() == CL_BUILD_PROGRAM_FAILURE)
        {
            string str = 

program.getBuildInfo<CL_PROGRAM_BUILD_LOG>(devices[0]);
            cout << "Program Info: " << str << endl;
        }
        cleanupHost();
    }
    catch(string msg)
    {
        cerr << "Exception caught in main(): " << msg << endl;
        cleanupHost();
    }
}

1.6.3 Example: Parallel Min() Function

This medium-complexity sample shows how to implement an efficient parallel 
min() function. 

The code is written so that it performs very well on either CPU or GPU. The 
number of threads launched depends on how many hardware processors are 
available. Each thread walks the source buffer, using a device-optimal access 
pattern selected at runtime. A multi-stage reduction using __local and __global 
atomics produces the single result value.

The sample includes a number of programming techniques useful for simple 
tests. Only minimal error checking and resource tear-down is used.

Runtime Code – 

1. The source memory buffer is allocated, and initialized with a random pattern. 
Also, the actual min() value for this data set is serially computed, in order to 
later verify the parallel result.

2. The compiler is instructed to dump the intermediate IL and ISA files for 
further analysis.

3. The main section of the code, including device setup, CL data buffer creation, 
and code compilation, is executed for each device, in this case for CPU and 
GPU. Since the source memory buffer exists on the host, it is shared. All 
other resources are device-specific.
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4. The global work size is computed for each device. A simple heuristic is used 
to ensure an optimal number of threads on each device. For the CPU, a 
given CL implementation can translate one work-item per CL compute unit 
into one thread per CPU core.

On the GPU, an initial multiple of the wavefront size is used, which is 
adjusted to ensure even divisibility of the input data over all threads. The 
value of 7 is a minimum value to keep all independent hardware units of the 
compute units busy, and to provide a minimum amount of memory latency 
hiding for a kernel with little ALU activity.

5. After the kernels are built, the code prints errors that occurred during kernel 
compilation and linking.

6. The main loop is set up so that the measured timing reflects the actual kernel 
performance. If a sufficiently large NLOOPS is chosen, effects from kernel 
launch time and delayed buffer copies to the device by the CL runtime are 
minimized. Note that while only a single clFinish() is executed at the end 
of the timing run, the two kernels are always linked using an event to ensure 
serial execution.

The bandwidth is expressed as “number of input bytes processed.” For high-
end graphics cards, the bandwidth of this algorithm is about an order of 
magnitude higher than that of the CPU, due to the parallelized memory 
subsystem of the graphics card.

7. The results then are checked against the comparison value. This also 
establishes that the result is the same on both CPU and GPU, which can 
serve as the first verification test for newly written kernel code.

8. Note the use of the debug buffer to obtain some runtime variables. Debug 
buffers also can be used to create short execution traces for each thread, 
assuming the device has enough memory.

9. You can use the Timer.cpp and Timer.h files from the TransferOverlap 
sample, which is in the SDK samples.

Kernel Code – 

10. The code uses four-component vectors (uint4) so the compiler can identify 
concurrent execution paths as often as possible. On the GPU, this can be 
used to further optimize memory accesses and distribution across ALUs. On 
the CPU, it can be used to enable SSE-like execution.

11. The kernel sets up a memory access pattern based on the device. For the 
CPU, the source buffer is chopped into continuous buffers: one per thread. 
Each CPU thread serially walks through its buffer portion, which results in 
good cache and prefetch behavior for each core.

On the GPU, each thread walks the source buffer using a stride of the total 
number of threads. As many threads are executed in parallel, the result is a 
maximally coalesced memory pattern requested from the memory back-end. 
For example, if each compute unit has 16 physical processors, 16 uint4 
requests are produced in parallel, per clock, for a total of 256 bytes per clock.
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12. The kernel code uses a reduction consisting of three stages: __global to 
__private, __private to local, which is flushed to __global, and finally 
__global to __global. In the first loop, each thread walks __global 
memory, and reduces all values into a min value in __private memory 
(typically, a register). This is the bulk of the work, and is mainly bound by 
__global memory bandwidth. The subsequent reduction stages are brief in 
comparison.

13. Next, all per-thread minimum values inside the work-group are reduced to a 
__local value, using an atomic operation. Access to the __local value is 
serialized; however, the number of these operations is very small compared 
to the work of the previous reduction stage. The threads within a work-group 
are synchronized through a local barrier(). The reduced min value is 
stored in __global memory.

14. After all work-groups are finished, a second kernel reduces all work-group 
values into a single value in __global memory, using an atomic operation. 
This is a minor contributor to the overall runtime.

Example Code 3 – 

//
// Copyright (c) 2010 Advanced Micro Devices, Inc. All rights reserved.
//

#include <CL/cl.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "Timer.h"

#define NDEVS       2

// A parallel min() kernel that works well on CPU and GPU

const char *kernel_source =
"                                                                            \n"
"#pragma OPENCL EXTENSION cl_khr_local_int32_extended_atomics : enable       \n"
"#pragma OPENCL EXTENSION cl_khr_global_int32_extended_atomics : enable      \n"
"                                                                            \n"
"  // 9. The source buffer is accessed as 4-vectors.                         \n"
"                                                                            \n"
"__kernel void minp( __global uint4 *src,                                    \n"
"                    __global uint  *gmin,                                   \n"
"                    __local uint *lmin,                                   \n"
"                    __global uint  *dbg,                                    \n"
"                    int  nitems,                                  \n"
"                    uint           dev )                                    \n"
"{                                                                           \n"
"   // 10. Set up __global memory access pattern.                            \n"
"                                                                            \n"
"   uint  count  = ( nitems / 4 ) / get_global_size(0);                      \n"
"   uint  idx    = (dev == 0) ? get_global_id(0) * count                     \n"
"                             : get_global_id(0);                            \n"
"   uint  stride = (dev == 0) ? 1 : get_global_size(0);                      \n"
"   uint  pmin   = (uint) -1;                                                \n"
"                                                                            \n"
"   // 11. First, compute private min, for this work-item.                   \n"
"                                                                            \n"
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"   for( int n=0; n < count; n++, idx += stride )                            \n"
"   {                                                                        \n"
"      pmin = min( pmin, src[idx].x );                                       \n"
"      pmin = min( pmin, src[idx].y );                                       \n"
"      pmin = min( pmin, src[idx].z );                                       \n"
"      pmin = min( pmin, src[idx].w );                                       \n"
"   }                                                                        \n"
"                                                                            \n"
"   // 12. Reduce min values inside work-group.                              \n"
"                                                                            \n"
"   if( get_local_id(0) == 0 )                                               \n"
"      lmin[0] = (uint) -1;                                                  \n"
"                                                                            \n"
"   barrier( CLK_LOCAL_MEM_FENCE );                                          \n"
"                                                                            \n"
"   (void) atom_min( lmin, pmin );                                           \n"
"                                                                            \n"
"   barrier( CLK_LOCAL_MEM_FENCE );                                          \n"
"                                                                            \n"
"   // Write out to __global.                                                \n"
"                                                                            \n"
"   if( get_local_id(0) == 0 )                                               \n"
"      gmin[ get_group_id(0) ] = lmin[0];                                    \n"
"                                                                            \n"
"   // Dump some debug information.                                          \n"
"                                                                            \n"
"   if( get_global_id(0) == 0 )                                              \n"
"   {                                                                        \n"
"      dbg[0] = get_num_groups(0);                                           \n"
"      dbg[1] = get_global_size(0);                                          \n"
"      dbg[2] = count;                                                       \n"
"      dbg[3] = stride;                                                      \n"
"   }                                                                        \n"
"}                                                                           \n"
"                                                                            \n"
"// 13. Reduce work-group min values from __global to __global. \n"
"                                                                            \n"
"__kernel void reduce( __global uint4 *src,                                  \n"
"                      __global uint  *gmin )                                \n"
"{                                                                           \n"
"   (void) atom_min( gmin, gmin[get_global_id(0)] ) ;                        \n"
"} \n";

int main(int argc, char ** argv)
{
   cl_platform_id   platform;

   int              dev, nw;
   cl_device_type   devs[NDEVS] = { CL_DEVICE_TYPE_CPU,
                                    CL_DEVICE_TYPE_GPU };

   cl_uint          *src_ptr;
   unsigned int     num_src_items = 4096*4096;

   // 1. quick & dirty MWC random init of source buffer.

   // Random seed (portable).

   time_t ltime;
   time(&ltime);

   src_ptr = (cl_uint *) malloc( num_src_items * sizeof(cl_uint) );
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   cl_uint a =   (cl_uint) ltime,
           b =   (cl_uint) ltime;
   cl_uint min = (cl_uint) -1;

   // Do serial computation of min() for result verification.

   for( int i=0; i < num_src_items; i++ )
   {
      src_ptr[i] = (cl_uint) (b = ( a * ( b & 65535 )) + (  b >> 16 ));
      min = src_ptr[i] < min ? src_ptr[i] : min;
   }

// Get a platform.

   clGetPlatformIDs( 1, &platform, NULL );

   // 3. Iterate over devices.

   for(dev=0; dev < NDEVS; dev++)
   {
      cl_device_id     device;
      cl_context       context;
      cl_command_queue queue;
      cl_program       program;
      cl_kernel        minp;
      cl_kernel        reduce;

      cl_mem           src_buf;
      cl_mem           dst_buf;
      cl_mem           dbg_buf;

      cl_uint          *dst_ptr,
                       *dbg_ptr;

      printf("\n%s: ", dev == 0 ? "CPU" : "GPU");

      // Find the device.

      clGetDeviceIDs( platform,
                      devs[dev],
                      1,
                      &device,
                      NULL);

      // 4. Compute work sizes.

      cl_uint compute_units;
      size_t  global_work_size;
      size_t  local_work_size;
      size_t  num_groups;

      clGetDeviceInfo( device, 
                       CL_DEVICE_MAX_COMPUTE_UNITS,
                       sizeof(cl_uint),
                       &compute_units,
                       NULL);

      if( devs[dev] == CL_DEVICE_TYPE_CPU )
      {
         global_work_size = compute_units * 1;      // 1 thread per core
         local_work_size = 1;
      }
      else
      {
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          cl_uint ws = 64;

          global_work_size = compute_units * 7 * ws; // 7 wavefronts per SIMD

          while( (num_src_items / 4) % global_work_size != 0 )
             global_work_size += ws;

          local_work_size = ws;
      }

      num_groups = global_work_size / local_work_size;

      // Create a context and command queue on that device.

      context = clCreateContext( NULL,
                                 1,
                                 &device,
                                 NULL, NULL, NULL);

      queue = clCreateCommandQueue(context,
                                   device,
                                   0, NULL);

      // Minimal error check.

      if( queue == NULL ) 
{

          printf("Compute device setup failed\n");
          return(-1);
      }

      // Perform runtime source compilation, and obtain kernel entry point.

      program = clCreateProgramWithSource( context,
                                           1,
                                           &kernel_source,
                                           NULL, NULL );

      //Tell compiler to dump intermediate .il and .isa GPU files.

ret = clBuildProgram( program,
1,
&device,
“-save-temps”,
NUL, NULL );

      // 5. Print compiler error messages

      if(ret != CL_SUCCESS) 
      {
         printf("clBuildProgram failed: %d\n", ret);

         char buf[0x10000];

         clGetProgramBuildInfo( program,
                                device,
                                CL_PROGRAM_BUILD_LOG,
                                0x10000,
                                buf,
                                NULL);
         printf("\n%s\n", buf);
         return(-1);
      }
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      minp   = clCreateKernel( program, "minp", NULL );
      reduce = clCreateKernel( program, "reduce", NULL );

      // Create input, output and debug buffers.

      src_buf = clCreateBuffer( context,
                                CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
                                num_src_items * sizeof(cl_uint),
                                src_ptr,
                                NULL );

      dst_buf = clCreateBuffer( context,
                                CL_MEM_READ_WRITE,
                                num_groups * sizeof(cl_uint),
                                NULL, NULL );

      dbg_buf = clCreateBuffer( context,
                                CL_MEM_WRITE_ONLY,
                                global_work_size * sizeof(cl_uint),
                                NULL, NULL );

      clSetKernelArg(minp, 0, sizeof(void *),        (void*) &src_buf);
      clSetKernelArg(minp, 1, sizeof(void *),        (void*) &dst_buf);
      clSetKernelArg(minp, 2, 1*sizeof(cl_uint),     (void*) NULL);
      clSetKernelArg(minp, 3, sizeof(void *),        (void*) &dbg_buf);
      clSetKernelArg(minp, 4, sizeof(num_src_items), (void*) &num_src_items);
      clSetKernelArg(minp, 5, sizeof(dev),           (void*) &dev);

      clSetKernelArg(reduce, 0, sizeof(void *),      (void*) &src_buf);
      clSetKernelArg(reduce, 1, sizeof(void *),      (void*) &dst_buf);

      CPerfCounter t;
      t.Reset();
      t.Start();

      // 6. Main timing loop.

#define NLOOPS 500

      cl_event ev;
      int nloops = NLOOPS;

      while(nloops--) 
{

         clEnqueueNDRangeKernel( queue,
                                 minp,
                                 1,
                                 NULL,
                                 &global_work_size,
                                 &local_work_size,
                                 0, NULL, &ev);

         clEnqueueNDRangeKernel( queue,
                                 reduce,
                                 1,
                                 NULL,
                                 &num_groups,
                                 NULL, 1, &ev, NULL);
      }

      clFinish( queue );
      t.Stop();
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      printf("B/W %.2f GB/sec, ", ((float) num_src_items *
                                   sizeof(cl_uint) * NLOOPS) /
                                  t.GetElapsedTime() / 1e9 );

      // 7. Look at the results via synchronous buffer map.

      dst_ptr = (cl_uint *) clEnqueueMapBuffer( queue,
                                                dst_buf,
                                                CL_TRUE,
                                                CL_MAP_READ,
                                                0, 
                                                num_groups * sizeof(cl_uint),
                                                0, NULL, NULL, NULL );

      dbg_ptr = (cl_uint *) clEnqueueMapBuffer( queue,
                                                dbg_buf,
                                                CL_TRUE,
                                                CL_MAP_READ,
                                                0, 
                                                global_work_size *
                                                sizeof(cl_uint),
                                                0, NULL, NULL, NULL );

      // 8. Print some debug info.

      printf("%d groups, %d threads, count %d, stride %d\n", dbg_ptr[0],
                                                             dbg_ptr[1],
                                                             dbg_ptr[2],
                                                             dbg_ptr[3] );

      if( dst_ptr[0] == min )
         printf("result correct\n");
      else
         printf("result INcorrect\n");

   }

   printf("\n");
   return 0;
}
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Chapter 2
AMD Implementation

2.1 The AMD Accelerated Parallel Processing Implementation of OpenCL

AMD Accelerated Parallel Processing harnesses the tremendous processing 
power of GPUs for high-performance, data-parallel computing in a wide range of 
applications. The AMD Accelerated Parallel Processing system includes a 
software stack, AMD GPUs, and AMD multicore CPUs. Figure 2.1 illustrates the 
relationship of the AMD Accelerated Parallel Processing components.

Figure 2.1 AMD Accelerated Parallel Processing Software Ecosystem

The AMD Accelerated Parallel Processing software stack provides end-users and 
developers with a complete, flexible suite of tools to leverage the processing 
power in AMD GPUs. AMD Accelerated Parallel Processing software embraces 
open-systems, open-platform standards. The AMD Accelerated Parallel 
Processing open platform strategy enables AMD technology partners to develop 
and provide third-party development tools. 

The software includes the following components:

 OpenCL compiler and runtime

 Debugging and Performance Profiling Tools – AMD CodeXL.

 Performance Libraries – clMath and other OpenCL accelerated libraries for 
optimized NDRange-specific algorithms.

The latest generations of AMD GPUs use unified shader architectures capable 
of running different kernel types interleaved on the same hardware. 

Compute Applications
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http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-math-libraries/


A M D  A C C E L E R A T E D P A R A L L E L  P R O C E S S I N G

2-2 Chapter 2: AMD Implementation
Copyright © 2014 Advanced Micro Devices, Inc. All rights reserved.   

Programmable GPU compute devices execute various user-developed programs, 
known to graphics programmers as shaders and to compute programmers as 
kernels. These GPU compute devices can execute non-graphics functions using 
a data-parallel programming model that maps executions onto compute units. 
Each compute unit contains one (pre-GCN devices) or more (GCN devices) 
vector (SIMD) units. In this programming model, known as AMD Accelerated 
Parallel Processing, arrays of input data elements stored in memory are 
accessed by a number of compute units.

Each instance of a kernel running on a compute unit is called a work-item. Work-
items are mapped to an n-dimensional index space, called an NDRange.

The GPU schedules the range of work-items onto a group of processing 
elements, until all work-items have been processed. Subsequent kernels then 
can be executed, until the application completes. A simplified view of the AMD 
Accelerated Parallel Processing programming model and the mapping of work-
items to processing elements is shown in Figure 2.2.

Figure 2.2 Simplified Mapping of OpenCL onto AMD Accelerated Parallel 
Processing

Work-groups are assigned to CUs. All work-items of a work-group can be 
processed only by the processing elements of a single CU. A processing element 
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can process only one work-item at a time; however, a CU can process multiple 
work-groups.

Note that in OpenCL 2.0, the work-groups are not required to divide evenly into 
the NDRange.

OpenCL maps the total number of work-items to be launched onto an n-
dimensional grid (ND-Range). The developer can specify how to divide these 
items into work-groups. AMD GPUs execute on wavefronts (groups of work-items 
executed in lock-step in a compute unit); there is an integer number of 
wavefronts in each work-group. Thus, as shown in Figure 2.3, hardware that 
schedules work-items for execution in the AMD Accelerated Parallel Processing 
environment includes the intermediate step of specifying wavefronts within a 
work-group. This permits achieving maximum performance on AMD GPUs. For 
a more detailed discussion of wavefronts, see Section 1.1, “Terminology,” page 1-
1. 

Figure 2.3 Work-Item Grouping Into Work-Groups and Wavefronts
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2.1.1 Work-Item Processing

All processing elements within a vector unit execute the same instruction in each 
cycle. For a typical instruction, 16 processing elements execute one instruction 
for 64 work items over 4 cycles. The block of work-items that are executed 
together is called a wavefront. For example, on the AMD Radeon™ HD 290X 
compute device, the 16 processing elements within each vector unit execute the 
same instruction for four cycles, which effectively appears as a 64-wide compute 
unit in execution width.

The size of wavefronts can differ on different GPU compute devices. For 
example, some of the low-end and older GPUs, such as the AMD Radeon™ HD 
54XX series graphics cards, have a wavefront size of 32 work-items. Higher-end 
and newer AMD GPUs have a wavefront size of 64 work-items.

Compute units operate independently of each other, so it is possible for different 
compute units to execute different instructions. It is also possible for different 
vector units within a compute unit to execute different instructions.

Before discussing flow control, it is necessary to clarify the relationship of a 
wavefront to a work-group. If a user defines a work-group, it consists of one or 
more wavefronts. A wavefront is a hardware thread with its own program counter; 
it is capable of following control flow independently of other wavefronts. A 
wavefront consists of 64 or fewer work-items. The mapping is based on a linear 
work-item order. On a device with a wavefront size of 64, work-items 0-63 map 
to wavefront 0, work items 64-127 map to wavefront 1, etc. For optimum 
hardware usage, an integer multiple of 64 work-items is recommended.

2.1.2 Work-Item Creation

For each work-group, the GPU compute device spawns the required number of 
wavefronts on a single compute unit. If there are non-active work-items within a 
wavefront, the processing elements that would have been mapped to those work-
items are idle. An example is a work-group that is a non-multiple of a wavefront 
size. 

2.1.3 Flow Control

Flow control, such as branching, is achieved by combining all necessary paths 
as a wavefront. If work-items within a wavefront diverge, all paths are executed 
serially. For example, if a work-item contains a branch with two paths, the 
wavefront first executes one path, then the second path. The total time to 
execute the branch is the sum of each path time. An important point is that even 
if only one work-item in a wavefront diverges, the rest of the work-items in the 
wavefront execute the branch. The number of work-items that must be executed 
during a branch is called the branch granularity. On AMD hardware, the branch 
granularity is the same as the number of work-items in a wavefront.

Masking of wavefronts is effected by constructs such as: 

if(x)
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{
. //items within these braces = A
.
.
}

else
{
. //items within these braces = B
.
.
}

The wavefront mask is set true for lanes (elements/items) in which x is true, then 
execute A. The mask then is inverted, and B is executed.

Example 1: If two branches, A and B, take the same amount of time t to execute 
over a wavefront, the total time of execution, if any work-item diverges, is 2t.

Loops execute in a similar fashion, where the wavefront occupies a compute unit 
as long as there is at least one work-item in the wavefront still being processed. 
Thus, the total execution time for the wavefront is determined by the work-item 
with the longest execution time.

Example 2: If t is the time it takes to execute a single iteration of a loop; and 
within a wavefront all work-items execute the loop one time, except for a single 
work-item that executes the loop 100 times, the time it takes to execute that 
entire wavefront is 100t.
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2.2 Hardware Overview for GCN Devices 

A general OpenCL device comprises compute units (CUs), each of which has 
sub-modules that ultimately have ALUs. A work-item (or SPMD kernel instance) 
executes on an ALU, as shown in Figure 2.4). 

Figure 2.4 Generalized AMD GPU Compute Device Structure for GCN 
Devices

In GCN devices, each CU includes one Scalar Unit and four Vector (SIMD) units, 
each of which contains an array of 16 processing elements (PEs). Each PE 
contains one ALU. Each SIMD unit simultaneously executes a single operation 
across 16 work items, but each can be working on a separate wavefront. 

For example, for the AMD Radeon™ HD 79XX devices each of the 32 CUs has 
one Scalar Unit and four Vector Units. Figure 2.5 shows only two compute 
engines/command processors of the array that comprises the compute device of 
the AMD Radeon™ HD 79XX family. 
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Figure 2.5 AMD Radeon™ HD 79XX Device Partial Block Diagram

In Figure 2.5, there are two command processors, which can process two 
command queues concurrently. The Scalar Unit, Vector Unit, Level 1 data cache 
(L1), and Local Data Share (LDS) are the components of one compute unit, of 
which there are 32. The scalar (SC) cache is the scalar unit data cache, and the 
Level 2 cache consists of instructions and data.

On GCN devices, the instruction stream contains both scalar and vector 
instructions. On each cycle, it selects a scalar instruction and a vector instruction 
(as well as a memory operation and a branch operation, if available); it issues 
one to the scalar unit, the other to the vector unit; this takes four cycles to issue 
over the four vector cores (the same four cycles over which the 16 units execute 
64 work-items).

The Asynchronous Compute Engines (ACEs) manage the CUs; a graphics 
command processor handles graphics shaders and fixed-function hardware. 

2.2.1 Key differences between pre-GCN and GCN devices

In pre-GCN devices (for a hardware overview, see Appendix D, “Hardware 
overview of pre-GCN devices.”), each compute unit consists of a single vector 
unit, each containing up to 16 processing elements. Each processing element, 
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which contains 4 or 5 ALUs, could execute bundles of 4 or 5 independent 
instructions co-issued in a VLIW (Very Long Instruction Word) format. All the 
processing elements within a vector unit execute a single wavefront (a group of 
64 work items). If operations within a wavefront contain dependencies, they 
cannot be scheduled in the same clock cycle, leaving some ALUs un-utilized. In 
such cases, some processing elements (and hence, vector units) remain under-
utilized.

In GCN devices, the CUs are arranged in four vector unit arrays consisting of 16 
processing elements each. Each of these arrays executes a single instruction 
across each lane for each block of 16 work-items. That instruction is repeated 
over four cycles to make the 64-element vector called a wavefront. 

Thus, in GCN devices, the four vector units within a CU can operate on four 
different wavefronts. If operations within a wavefront include dependencies, 
independent operations from different wavefronts can be selected to be assigned 
to a single vector unit to be executed in parallel every cycle.

GCN-based GPUs have 32KB of dedicated L1 instruction cache. A single 
instruction cache instance serves up to 4 CUs (depending upon the architecture 
family and device), with each CU holding up to 40 wavefronts. As each wavefront 
includes its own program counter, a single instruction cache unit may serve up 
to 160 wavefronts with each executing a different instruction in the program. 

Note: If the program is larger than 32KB, the L1-L2 cache trashing can inhibit 
performance. The size of the ISA can be determined by using the CodeXL 
analysis mode, under the Statistics tab. For information about how to use 
CodeXL, see Chapter 4.

2.2.2 Key differences between Southern Islands, Sea Islands, and Volcanic Islands families

The number of Asynchronous Compute Engines (ACEs) and CUs in an AMD 
GCN family GPU, and the way they are structured, vary with the GCN device 
family, as well as with the device designations within the family. 

The ACEs are responsible for managing the CUs and for scheduling and 
resource allocation of the compute tasks (but not of the graphics shader tasks). 
The ACEs operate independently; the greater the number of ACEs, the greater 
is the performance. Each ACE fetches commands from cache or memory, and 
creates task queues to be scheduled for execution on the CUs depending on 
their priority and on the availability of resources. 

Each ACE contains up to eight hardware queues and, together with the graphics 
command processor, allows up to nine independent vector instructions to be 
executed per clock cycle. Some of these queues are not available for use by 
OpenCL.

Devices in the Southern Islands families typically have two ACEs. The ACE 
engines on the Southern Islands families are single-threaded, which means that 
they contain two hardware queues.
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Devices in the Sea Islands and Volcanic Islands families contain between four 
and eight ACEs, and are multi-threaded (thereby supporting more hardware 
queues) so they offer more performance. For example, the AMD Radeon™ R9 
290X devices, in the VI family contain 8 ACEs and 44 CUs. 

2.2.2.1  A note on hardware queues

A hardware queue can be thought of as a GPU entry point. The GPU can 
process kernels from several compute queues concurrently. All hardware queues 
ultimately share the same compute cores. The use of multiple hardware queues 
is beneficial when launching small kernels that do not fully saturate the GPU. For 
example, the AMD Radeon™ HD 290X compute device can execute up to 
112,640 threads concurrently. The GPU can execute two kernels each spawning 
56320 threads (assuming fully occupancy) twice as fast if launched concurrently 
through two hardware queues than serially through a single hardware queue. 

An OpenCL queue is assigned to a hardware queue on creation time. The 
hardware queue is selected according to the creation order of the OpenCL queue 
within an OpenCL context. If the GPU supports K hardware queues, the Nth 
created OpenCL queue will be assigned to the (N mod K) hardware queue. The 
number of compute queues can be limited by specifying the 
GPU_NUM_COMPUTE_RINGS environment variable.

2.3 Communication Between Host and the GPU Compute Device

The following subsections discuss the communication between the host (CPU) 
and the GPU in a compute device. This includes an overview of the PCIe bus, 
processing API calls, and DMA transfers.

Communication and data transfers between the system and the GPU compute 
device occur on the PCIechannel. AMD Accelerated Parallel Processing 
graphics cards use PCIe 2.0 x16 (second generation, 16 lanes). Generation 1 
x16 has a theoretical maximum throughput of 4 GBps in each direction. 
Generation 2 x16 doubles the throughput to 8 GBps in each direction. Southern 
Islands AMD GPUs support PCIe 3.0 with a theoretical peak performance of 
16 GBps. Actual transfer performance is CPU and chipset dependent.

Transfers from the system to the GPU compute device are done either by the 
command processor or by the DMA engine. The GPU compute device also can 
read and write system memory directly from the compute unit through kernel 
instructions over the PCIebus.

2.3.1 Processing API Calls: The Command Processor

The host application does not interact with the GPU compute device directly. A 
driver layer translates and issues commands to the hardware on behalf of the 
application.

Most commands to the GPU compute device are buffered in a command queue 
on the host side. The queue of commands is sent to, and processed by, the GPU 
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compute device. There is no guarantee as to when commands from the 
command queue are executed, only that they are executed in order. 

Command queue elements include: 

 Kernel execution calls

 Kernels

 Constants

 Transfers between device and host

2.3.2 DMA Transfers

Certain memory transfer calls use the DMA engine. To properly leverage the 
DMA engine, make the associated OpenCL data transfer calls. See the AMD 
OpenCL Optimization Reference Guide for more information.

Direct Memory Access (DMA) memory transfers can be executed separately from 
the command queue using the DMA engine on the GPU compute device. DMA 
calls are executed immediately; and the order of DMA calls and command queue 
flushes is guaranteed. 

DMA transfers can occur asynchronously. This means that a DMA transfer is 
executed concurrently with other system or GPU compute operations when there 
are no dependencies. However, data is not guaranteed to be ready until the DMA 
engine signals that the event or transfer is completed. The application can use 
OpenCL to query the hardware for DMA event completion. If used carefully, DMA 
transfers are another source of parallelization.

All GCN devices have two DMA engines that can perform bidirectional transfers 
over the PCIe bus with multiple queues created in consecutive order, since each 
DMA engine is assigned to an odd or an even queue correspondingly.

2.3.3 Masking Visible Devices

By default, OpenCL applications are exposed to all GPUs installed in the system; 
this allows applications to use multiple GPUs to run the compute task.

In some cases, the user might want to mask the visibility of the GPUs seen by 
the OpenCL application. One example is to dedicate one GPU for regular 
graphics operations and the other three (in a four-GPU system) for Compute. To 
do that, set the GPU_DEVICE_ORDINAL environment parameter, which is a comma-
separated list variable:

 Under Windows: set GPU_DEVICE_ORDINAL=1,2,3

 Under Linux: export GPU_DEVICE_ORDINAL=1,2,3

Another example is a system with eight GPUs, where two distinct OpenCL 
applications are running at the same time. The administrator might want to set 
GPU_DEVICE_ORDINAL to 0,1,2,3 for the first application, and 4,5,6,7 for the 
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second application; thus, partitioning the available GPUs so that both 
applications can run at the same time.

2.4 Wavefront Scheduling 

GPU compute devices are very efficient at parallelizing large numbers of work-
items in a manner transparent to the application. Each GPU compute device 
uses the large number of wavefronts to hide memory access latencies by having 
the resource scheduler switch the active wavefront in a given compute unit 
whenever the current wavefront is waiting for a memory access to complete. 
Hiding memory access latencies requires that each work-item contain a large 
number of ALU operations per memory load/store.

Figure 2.6 shows the timing of a simplified execution of wavefronts in a single 
compute unit. At time 0, the wavefronts are queued and waiting for execution. In 
this example, only four wavefronts (T0…T3) are scheduled for the compute unit. 
The hardware limit for the number of active wavefront is dependent on the 
resource usage (such as the number of active registers used) of the program 
being executed. An optimally programmed GPU compute device typically has 
many of active wavefronts. 

Figure 2.6 Simplified Execution Of Wavefront On A Single Compute Unit

At runtime, wavefront T0 executes until cycle 20; at this time, a stall occurs due 
to a memory fetch request. The scheduler then begins execution of the next 
wavefront, T1. Wavefront T1 executes until it stalls or completes. New wavefronts 
execute, and the process continues until the available number of active 
wavefronts is reached. The scheduler then returns to the first wavefront, T0.
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If the data wavefront T0 is waiting for has returned from memory, T0 continues 
execution. In the example in Figure 2.6, the data is ready, so T0 continues. Since 
there were enough wavefronts and processing element operations to cover the 
long memory latencies, the compute unit does not idle. This method of memory 
latency hiding helps the GPU compute device achieve maximum performance.

If none of T0 – T3 are runnable, the compute unit waits (stalls) until one of T0 – 
T3 is ready to execute. In the example shown in Figure 2.7, T0 is the first to 
continue execution.

Figure 2.7 Compute Unit Stall Due to Data Dependency
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Chapter 3
Building and Running OpenCL 
Programs

An OpenCL application consists of a host program (C/C++) and an optional 
kernel program (.cl). To compile an OpenCL application, the host program must 
be compiled; this can be done using an off-the-shelf compiler such as g++ or 
MSVC++. The application kernels are compiled into device-specific binaries 
using the OpenCL compiler.

3.1 Compiling the Host Program

In order to compile the host program, users must install the latest AMD 
Accelerated Parallel Processing SDK, which provides all the necessary OpenCL 
runtime headers and libraries required by the host compiler. The SDK installer 
provided by AMD sets an environmental variable named AMDAPPSDKROOT 
which is set to the path of the directory in which the AMD Accelerated Parallel 
Processing SDK is installed. The runtime headers and libraries are placed in the 
install directory under the “include” and “lib” sub-folders, respectively. [Note: 
Typically, “lib” contains two sub-directories: one library targeted for 32-bit 
applications, and another for 64-bit applications]. 

While building the host program, these headers and libraries must be included in 
the project by choosing the appropriate options for the targeted operating system, 
IDE, and compiler.

3.1.1 Compiling on Windows

To compile OpenCL applications on Windows, Visual Studio 2008 Professional 
Edition (or later) or the Intel C (C++) compiler must be installed. All C++ files 
must be added to the project, which must have the following settings.

 Project Properties  C/C++  Additional Include Directories
These must include $(AMDAPPSDKROOT)/include for OpenCL headers. 
Optionally, they can include $(AMDAPPSDKSAMPLESROOT)/include for 
SDKUtil headers.

 Project Properties  Linker  Additional Library Directories
These must include $(AMDAPPSDKROOT)/lib/x86 for OpenCL libraries for 32-
bit and $(AMDAPPSDKROOT)/lib/x86_64 for 64-bit. Optionally, they can 
include $(AMDAPPSDKSAMPLESROOT)/lib/x86 for SDKUtil libraries.

 Project Properties  Linker  Input  Additional Dependencies
These must include OpenCL.lib. Optionally, they can include SDKUtil.lib.
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3.1.2 Compiling on Linux

To compile OpenCL applications on Linux, gcc or the Intel C compiler must be 
installed. There are two major steps: compiling and linking. 

1. Compile all the C++ files (Template.cpp), and get the object files.
For 32-bit object files on a 32-bit system, or 64-bit object files on 64-bit 
system:

g++ -o Template.o -c Template.cpp -I$AMDAPPSDKROOT/include

For building 32-bit object files on a 64-bit system:

g++ -o Template.o -c Template.cpp -I$AMDAPPSDKROOT/include

2. Link all the object files generated in the previous step to the OpenCL library 
and create an executable.

For linking to a 64-bit library:

g++ -o Template Template.o -lOpenCL -L$AMDAPPSDKROOT/lib/x86_64

For linking to a 32-bit library:

g++ -o Template Template.o -lOpenCL -L$AMDAPPSDKROOT/lib/x86 

3.2 Compiling the device programs

OpenCL device programs that will be executed in parallel by each work-item are 
expressed in terms of kernel functions. The device programs may also include 
other helper functions (which cannot be invoked by the host) in addition to the 
kernels. 

The device programs are written in the OpenCL C language. The device 
programs must be built for each target device before they can be executed on 
the OpenCL device. As a result, the same source program may have multiple 
device-specific binaries. To manage this conveniently, the OpenCL runtime 
provides a container-like object, called a program object, that contains the source 
code as well as the device-specific binaries of all the kernels and helper functions 
that are defined in a program scope. Compiling the application kernels requires 
first creating program objects.

3.2.1 Creating OpenCL program objects 

In general, OpenCL program objects are created in two ways:

 From the OpenCL C source

 From a pre-built binary (either device-specific or device-agnostic)

3.2.1.1  Creating program objects from the OpenCL C source 

In this method, the OpenCL C source is passed to the 
clCreateProgramWithSource runtime API (for more details, see the OpenCL 
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specification) as a text buffer to create the program object. If the source code 
is in an external file, then it must be read and placed in a text buffer before 
passing the buffer to the API.

Note: Most of the examples in this chapter are shown using runtime C APIs. In 
order to use the C++ wrapper APIs, one must map (a trivial step) the C APIs to 
corresponding C++ wrapper APIs. For cleanness, error checking is not shown.

Example creation of program objects from an inline text string 
const char *source =
"__kernel void myKernel( __global uint *src, __global uint *dst)\n"
"{ \n"
" uint gid = get_global_id(0); \n"
" dst[gid] = src[gid] * 10; \n"
"} \n";

cl_program program = clCreateProgramWithSource( context, 1,  
&source, NULL, NULL );

Example creation of program objects from an external file

std::ifstream f("my_kernel.cl");
std::stringstream st;
st << f.rdbuf();
std::string ss = st.str();
const char* source = ss.c_str();
const size_t length = ss.length();

cl_program program = clCreateProgramWithSource(context, 1, &source, 
&length, NULL);

3.2.1.2  Creating program objects from a pre-built binary

OpenCL allows the creation of program object from binaries previously built for 
one or more specific device(s) or from intermediate device-agnostic binaries 
(using, for example, the Standard Portable Intermediate Representation (SPIR) 
format). Such binaries serve two useful purposes:

 Software vendors can protect their IP by supplying the OpenCL library as a 
collection of pre-built binary programs instead of as raw source code. 

 The consumer of the OpenCL library can create new program objects using 
those binaries for use with their own applications. 

In this method, the OpenCL binary is passed to the binaries argument of the 
clCreateProgramWithBinary runtime API (for more details, see the OpenCL 
specification). If the binary program code is in a file, the binary must be loaded 
from the file, the content of the file must be placed in a character buffer, and the 
resulting buffer must be passed to the clCreateProgramWithBinary API.

For information about how to generate device-specific binaries, see Section 3.5 
of the OpenCL specification.

https://www.khronos.org/faq/spir
https://www.khronos.org/faq/spir
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For more information about the SPIR format and about how to consume SPIR 
binaries, see Appendix G.

3.2.2 Building the program executable from the program objects

After the program object is created (from either sources or binaries), the program 
must be built for the targeted devices and the device executables must be 
generated. The executables are generated mainly in two ways:

 Building (compile and link) the program in a single step (using 
clBuildProgram)

 Compiling and linking the program separately (using clCompileProgram 
and clLinkProgram)

3.2.2.1  Building the program in a single step

The most common way of building program objects, this method uses a single 
API, clBuildProgram, for both compiling and linking the program. For additional 
details about this API, see the OpenCL specification.

Example(s):

Suppose a program object has been created as follows:

cl_program program = clCreateProgramWithSource(context, 1, &source, 
&length, NULL);

Next, the program object can be built for all the devices in the context or for a 
list of selected devices.

 To build the program for all the devices, “NULL” must be passed against 
the target device list argument, as shown below: 
clBuildProgram(program, 0, NULL, NULL, NULL, NULL);

 To build for any particular GPU device or a list of devices.:
int nDevices = 0;
clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 0, NULL, 
&nDevices);
cl_device_id * devices = malloc(nDevices * 
sizeof(cl_device_id));
clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, nDevices * 
sizeof(cl_device_id), devices, NULL);

To build for the nth GPU device in a list of devices:
clBuildProgram(program, 1, &devices[n], NULL, NULL, 
NULL);

To build for the first n number of GPU devices
clBuildProgram(program, n, devices, NULL, NULL, NULL);
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Build Options:

A list of options can be passed during program build to control each stage of the 
building process. The full list includes various categories of options, such as 
preprocessor, compiler, optimization, linker, and debugger. Some of them are 
standard (specified by Khronos); others are vendor-specific. For details about the 
standard options, see the clBuildProgram API’s description in the OpenCL 
specification.

For information about the frequently used standard build options, see 3.3, 
“Supported Standard OpenCL Compiler Options”.

For information about AMD-developed supplemental options and environment 
variables, see 3.4, “AMD-Developed Supplemental Compiler Options”.

Special note for building OpenCL 2.0 programs:

In order to build the program with OpenCL 2.0 support, the “-cl-std=CL2.0” 
option must be specified; otherwise, the highest OpenCL C 1.x language version 
supported by each device is used when compiling the program for each device. 

OpenCL 2.0 is backwards-compatible with OpenCL 1.X. Applications written on 
OpenCL 1.x should run on OpenCL 2.0 without requiring any changes to the 
application.

Special note for debugging:

OpenCL provides a way to check and query the compilation/linking errors that 
occur during program build. Various build parameters for each device in the 
program object can be queried by using the clGetProgramBuildInfo API. 
Retrieving the build, compile or link log by using the CL_PROGRAM_BUILD_LOG 
input parameter is a useful and frequently-used technique. For details, see the 
OpenCL specification.

Example:

cl_int err = clBuildProgram(program, 1, &device, NULL, NULL, NULL);
If (err != CL_SUCCESS)
{

printf("clBuildProgram failed: %d\n", err);
char log[0x10000];
clGetProgramBuildInfo( program, device, CL_PROGRAM_BUILD_LOG, 

0x10000, log, NULL);
printf("\n%s\n", log);
return -1;

}

https://www.khronos.org/registry/cl/sdk/2.0/docs/man/xhtml/clBuildProgram.html
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3.2.2.2  Compiling and linking the program separately

In this method, two separate steps are performed to generate the device 
executable. First, program objects are compiled by using the clCompileProgram 
API (for details, see the OpenCL specification); then the compiled programs are 
linked together to generate the final executable by using the clLinkProgram API 
(for details, see the OpenCL specification). This method is particularly useful--
and is the only way--to link a previously-compiled program. By using this method, 
users can link their program objects with external program objects to build the 
final program object. 

Both the APIs support similar options (depends on whether one is compiling or 
linking) as the options in clBuildProgram, to control the compiler and linker. For 
details about the options supported by each API, see the respective API 
description section in the OpenCL specification.

Compiling the program – 

The user must compile each program object separately. This step may be a little 
tedious if a source program depends on other header files. In that case, separate 
program objects corresponding each header file must be created first. Then, 
during compilation, those header programs must be passed as embedded 
headers along with the intended program object.

Example (derived from the OpenCL specification):

Consider the following program source:

#include <foo.h>
#include <mydir/myinc.h>
__kernel void image_filter (int n, int m, __constant float 
*filter_weights, __read_only image2d_t src_image, __write_only 
image2d_t dst_image)
{
...
}

This kernel includes two headers, foo.h and mydir/myinc.h. So first create 
the program objects corresponding to each header as follows:

cl_program foo_pg = clCreateProgramWithSource(context, 1, 
&foo_header_src, NULL, &err);

cl_program myinc_pg = clCreateProgramWithSource(context, 1, 
&myinc_header_src, NULL, &err);

Suppose the program source described above is given by program_A and is 
loaded via clCreateProgramWithSource.

Now, these headers can be passed as embedded headers along with the 
program object

cl_program input_headers[2] = { foo_pg, myinc_pg };
char * input_header_names[2] = { “foo.h”, “mydir/myinc.h” };
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clCompileProgram(program_A, 0, NULL, // num_devices & device_list
NULL, // compile_options
2, // num_input_headers
input_headers,
input_header_names,
NULL, NULL); // pfn_notify & user_data

Linking the program – 

In this phase, multiple pre-compiled program objects are linked together to create 
a new program object that contains the final executable. The executable binary 
can be queried by using clGetProgramInfo and can be specified to 
clCreateProgramWithBinary, as shown earlier.

Example:

Assume there are two pre-compiled program objects, program_A and 
program_B. These two can be linked together as follows:

cl_program program_list[] = { program_A, program_B};
cl_program program_final = clLinkProgram(context, 

0, NULL, // num_devices & device_list
                                NULL, // compile_options
                                2, // num_input_programs,
                                program_list, // const cl_program 

*input_programs,
                                NULL, NULL, // pfn_notify & 

user_data
     NULL); // errcode_ret

3.3 Supported Standard OpenCL Compiler Options

The frequently-used build options are:

 -I dir — Add the directory dir to the list of directories to be searched for 
header files. When parsing #include directives, the OpenCL compiler 
resolves relative paths using the current working directory of the application.

 -D name — Predefine name as a macro, with definition = 1. For -
D name=definition, the contents of definition are tokenized and processed 
as if they appeared during the translation phase three in a #define directive. 
In particular, the definition is truncated by embedded newline characters.
-D options are processed in the order they are given in the options argument 
to clBuildProgram.

For additional build options, see the OpenCL specification.

3.4 AMD-Developed Supplemental Compiler Options

The following supported options are not part of the OpenCL specification:

 -g — This is an experimental feature that lets you use the GNU project 
debugger, GDB, to debug kernels on x86 CPUs running Linux or 

https://www.khronos.org/registry/cl/sdk/2.0/docs/man/xhtml/clBuildProgram.html
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cygwin/minGW under Windows. For more details, see Chapter 4, “Debugging 
and Profiling OpenCL.” This option does not affect the default optimization of 
the OpenCL code.

 -O0 — Specifies to the compiler not to optimize. This is equivalent to the 
OpenCL standard option -cl-opt-disable.

 -f[no-]bin-source — Does [not] generate OpenCL source in the .source 
section. For more information, see Appendix C, “OpenCL Binary Image 
Format (BIF) v2.0.” by default, this option does NOT generate the source.

 -f[no-]bin-llvmir — Does [not] generate LLVM IR in the .llvmir section. 
For more information, see Appendix C, “OpenCL Binary Image Format (BIF) 
v2.0.” By default, this option GENERATES the LLVM IR.

 -f[no-]bin-amdil — Does [not] generate AMD IL in the .amdil section. 
For more information, see Appendix C, “OpenCL Binary Image Format (BIF) 
v2.0.” By default, this option does NOT generate the AMD IL.

 -f[no-]bin-exe — Does [not] generate the executable (ISA) in the .text 
section. For more information, see Appendix C, “OpenCL Binary Image 
Format (BIF) v2.0.” By default, this option GENERATES the ISA.

 -f[no-]bin-hsail — Does [not] generate HSAIL/BRIG in the binary. By 
default, this option does NOT generate HSA IL/BRIG in the binary.

 -save-temps[=<prefix>] — This option dumps intermediate temporary 
files, such as IL and ISA code, for each OpenCL kernel. If <prefix> is not 
given, temporary files are saved in the default temporary directory (the 
current directory for Linux, C:\Users\<user>\AppData\Local for Windows). 
If <prefix> is given, those temporary files are saved with the given 
<prefix>. If <prefix> is an absolute path prefix, such as 
C:\your\work\dir\mydumpprefix, those temporaries are saved under 
C:\your\work\dir, with mydumpprefix as prefix to all temporary names. For 
example, 

-save-temps
under the default directory

_temp_nn_xxx_yyy.il,  _temp_nn_xxx_yyy.isa

-save-temps=aaa
under the default directory

aaa_nn_xxx_yyy.il,  aaa_nn_xxx_yyy.isa

-save-temps=C:\you\dir\bbb
under C:\you\dir

bbb_nn_xxx_yyy.il,  bbb_nn_xxx_yyy.isa

where xxx and yyy are the device name and kernel name for this build, 
respectively, and nn is an internal number to identify a build to avoid 
overriding temporary files. Note that this naming convention is subject to 
change.
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To avoid source changes, there are two environment variables that can be used 
to change CL options during the runtime.

 AMD_OCL_BUILD_OPTIONS — Overrides the CL options specified in 
clBuildProgram().

 AMD_OCL_BUILD_OPTIONS_APPEND — Appends options to those specified in 
clBuildProgram().

3.5 Creating device-specific binaries

To generate pre-built device-specific binaries from the OpenCL C source or from 
other binaries (such as the SPIR binaries), certain add-on steps must be 
performed on the host side. The following is a typical sequence of steps if device-
specific binaries are to be generated from the OpenCL C sources:

1. Create the program object from OpenCL C source using 
clCreateProgramWithSource().

2. Build (i.e. compile and link) the program object (for details, see the 
“Generating program executable” section).

3. Read the device-specific binaries from the program object using 
clGetProgramInfo() as shown below:

//Get the number of devices attached with program object
cl_uint nDevices = 0;
clGetProgramInfo(program, CL_PROGRAM_NUM_DEVICES, 
sizeof(cl_uint),&nDevices, NULL);

//Get the Id of all the attached devices
cl_device_id *devices = new cl_device_id[nDevices];
clGetProgramInfo(program, CL_PROGRAM_DEVICES, 
sizeof(cl_device_id) * nDevices, devices, NULL);

// Get the sizes of all the binary objects
size_t *pgBinarySizes = new size_t[nDevices];
lGetProgramInfo(program, CL_PROGRAM_BINARY_SIZES, 
sizeof(size_t) * nDevices, pgBinarySizes, NULL);

// Allocate storage for each binary objects
unsigned char **pgBinaries = new unsigned 
char*[nDevices];
for (cl_uint i = 0; i < nDevices; i++)
{
 pgBinaries[i] = new unsigned char[pgBinarySizes[i]];
}

// Get all the binary objects
clGetProgramInfo(program, CL_PROGRAM_BINARIES, 
sizeof(unsigned char*) * nDevices, pgBinaries, NULL);
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Now, save these device specific binaries into the files for future use.

3.6 Command execution flow

The runtime system assigns the work in the command queues to the underlying 
devices. Commands are placed into the queue using the clEnqueue commands 
shown in the listing below.

The commands can be broadly classified into three categories.

 Kernel commands (for example, clEnqueueNDRangeKernel(), etc.),

 Memory commands (for example, clEnqueueReadBuffer(), etc.), and 

 Event commands (for example, clEnqueueWaitForEvents(), etc. 

As illustrated in Figure 3.1, the application can create multiple command queues 
(some in libraries, for different components of the application, etc.). These 
queues are muxed into one queue per device type. The figure shows command 
queues 1 and 3 merged into one CPU device queue (blue arrows); command 
queue 2 (and possibly others) are merged into the GPU device queue (red 
arrow). The device queue then schedules work onto the multiple compute 
resources present in the device. Here, K = kernel commands, M = memory 
commands, and E = event commands.

OpenCL API Function Description

clCreateCommandQueueWithPr
operties (in OpenCL 2.0)
clCreateCommandQueue() (in 
OpenCL 1.x; deprecated in 
OpenCL 2.0)

Create a command queue for a specific device (CPU, 
GPU).

clCreateKernel() Creates a kernel object from the program object.

clCreateBuffer() Creates a buffer object for use via OpenCL kernels.

clSetKernelArg()
clEnqueueNDRangeKernel()

Set the kernel arguments, and enqueue the kernel in a 
command queue.

clEnqueueReadBuffer(), 
clEnqueueWriteBuffer()

Enqueue a command in a command queue to read from 
a buffer object to host memory, or write to the buffer 
object from host memory.

clEnqueueWaitForEvents() Wait for the specified events to complete.
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Figure 3.1 Runtime processing structure

3.7 Running the Program

3.7.1 Creating Kernel Objects

After a program is created and built, the next step is to run the kernel code on 
the devices. Running the kernel code requires the creation of one or more kernel 
objects for each kernel function (declared as “__kernel” or “kernel”). Kernel 
objects are run-time objects that bind the specific kernel function with the 
argument values to be used while executing it.

The clCreateKernel API creates a kernel object from a program object by 
using the name of the kernel function passed with program object. The 
arguments to kernel objects are set by the following APIs:

clSetKernelArg: used to set all the kernel arguments except SVM pointers.

clSetKernelArgSVMPointer: introduced in OpenCL2.0 as a new API to set 
SVM pointers as the argument value.

Example:

A sample kernel definition is shown below.

__kernel void sample_kernel(__global const uchar *normalPtr,    
__global uchar *svmPtr)

{
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K111

CPU Core 2
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Layer
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For CPU queue For CPU queue For GPU queue
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CPU

n
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…

}

To create a kernel object for the above kernel, you must pass the program object 
corresponding to the kernel to the clCreateKernel function. Assuming that the 
program object containing the above kernel function has been created and built 
as program, a kernel object for the above kernel would be created as follows:

Cl_kernel kernel = clCreateKernel(program, "sample_kernel", 
NULL);

Suppose a buffer object and an SVM array have been created as follows:

Cl_mem buffer = clCreateBuffer(context, CL_MEM_READ_ONLY,  
length * sizeof(cl_uchar), NULL, NULL); 

cl_uchar *svmPtr = clSVMAlloc(context,  CL_MEM_READ_WRITE,  
length * sizeof(cl_uchar), 0);

Now, to set the kernel arguments for the kernel object, the buffer (or SVM array 
in OpenCL 2.0) and the corresponding index must be passed to the kernel as 
first and second argument, respectively:

clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&buffer);

clSetKernelArgSVMPointer(kernel,  1,  (void *)( svmPtr));

3.7.2 Creating a command queue

In order to run kernels or any other commands in a device, the host must create 
a command queue associated with the device and then en-queue the commands 
to that command queue. A command queue is associated with only one device; 
however, a device can have one or more command queues. The device executes 
the commands in-order or out-of-order depending on the mode set during 
command creation. 

A command queue (host or device) is created by using the 
clCreateCommandQueueWithProperties API (clCreateCommandQueue in 
OpenCL 1.x, deprecated in OpenCL 2.0) by specifying the device ID of the 
targeted device within the context; and the queue properties, which specify the 
type of the queue (host or device) and the mode of command execution (in-order 
or out-of-order). For details, see the 
clCreateCommandQueueWithProperties or clCreateCommandQueue API 
in the OpenCL specification.

Example: To create a default host-side command queue

cl_queue_properties *props = NULL;
cl_command_queue commandQueue = 
clCreateCommandQueueWithProperties(context, deviceId, props, 
&status);
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Example: To create a host-side out-of-order command queue with profiling 
enabled

cl_queue_properties prop[] = { CL_QUEUE_PROPERTIES, 
CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE | 
CL_QUEUE_PROFILING_ENABLE, 0};

cl_command_queue commandQueue = 
clCreateCommandQueueWithProperties(context, deviceId, props, 
&status);

Example: To create a default device-side out-of-order command queue with 
a specific size

cl_queue_properties prop[] = { CL_QUEUE_PROPERTIES, 
CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE | CL_QUEUE_ON_DEVICE | 
CL_QUEUE_ON_DEVICE_DEFAULT, CL_QUEUE_SIZE, maxQueueSize, 0 };

cl_command_queue commandQueue = 
clCreateCommandQueueWithProperties(context, deviceId, props, 
&status);

3.7.3 Running a Kernel (from the host)

After a command queue has been created, the queue can be used to en-queue 
the commands to the associated device. The clEnqueueNDRangeKernel API 
en-queues a command to execute a kernel to a device. During the kernel en-
queue, one must specify the total number of kernel instances or work-items to 
be executed by the device and the size of each work-group or block. This 
information is set by the work_dim, global_work_size, local_work_size 
and global_work_offset arguments. Like any other command en-queuing 
API, the clEnqueueNDRangeKernel returns an event object that conveys 
information about the en-queued kernel and can be used to synchronization other 
commands dependent on this kernel. In this API, a list of events that need to 
complete before this particular command can be executed can be specified.

For example, suppose a kernel object and command queue, named “kernel” and 
“commandQueue” respectively, have already been created. Suppose you want 
to launch the kernel over a 2-D dimensional space having total work-items 
{1024x1024} and each block/group size {16x16}. To do this, the kernel can be 
en-queued into the command queue as follows:

cl_uint workDim = 2;
size_t globalWorkSize[] = {1024, 1024};
size_t localWorkSize[] = {16, 16};

clEnqueueNDRangeKernel(commandQueue, kernel, workDim, NULL, 
globalWorkSize, localWorkSize, 0, NULL, NULL);
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3.8 A note on thread safety

As per the OpenCL specification, all OpenCL API calls except clSetKernelArg 
and clSetKernelArgSVMPointer, are thread safe. clSetKernelArg and 
clSetKernelArgSVMPointer are safe to call from any host thread. As long 
as concurrent calls operate on different cl_kernel objects, clSetKernelArg 
and clSetKernelArgSVMPointer are also safe to call re-entrantly. However, 
if clSetKernelArg or clSetKernelArgSVMPointer are called from multiple 
host threads on the same cl_kernel object at the same time, the behavior of 
the cl_kernel object is undefined. 

For information about additional limitations, see the OpenCL specification.

3.9 Toolchain considerations

The compiler tool-chain provides a common framework for both CPUs and 
GPUs, sharing the front-end and some high-level compiler transformations. The 
back-ends are optimized for the device type (CPU or GPU). The kernels are 
compiled by the OpenCL compiler to either CPU binaries or GPU binaries, 
depending on the target device.

For CPU processing, the OpenCL runtime uses the LLVM AS to generate x86 
binaries. The OpenCL runtime automatically determines the number of 
processing elements, or cores, present in the CPU and distributes the OpenCL 
kernel between them. 

For GPU processing, the OpenCL compiler generates an intermediate 
representation, called AMDIL or HSAIL, depending on whether the OpenCL 1.2 
or OpenCL 2.0 compile-with flag is specified. The OpenCL Runtime layer links 
the needed libraries and passes the complete IL to the Shader compiler for 
compilation to GPU-specific binaries. 
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Chapter 4
Debugging and Profiling OpenCL

This chapter discusses how to debug and profile OpenCL programs running on 
AMD Accelerated Parallel Processing GPU and CPU compute devices. The 
preferred method is to debug with AMD CodeXL, as described in Section 4.1, 
“AMD CodeXL GPU Debugger.” The second method, described in Section 4.2, 
“Debugging CPU Kernels with GDB,” is to use experimental features provided by 
AMD Accelerated Parallel Processing (GNU project debugger, GDB) to debug 
kernels on x86 CPUs running Linux or cygwin/minGW under Windows.

4.1 AMD CodeXL GPU Debugger

CodeXL 1.6, the latest version as of this writing, is available as an extension to 
Microsoft® Visual Studio®, a stand-alone version for Windows, and a stand-alone 
version for Linux.

4.1.1 AMD CodeXL features

AMD CodeXL provides a “white box” model offering intuitive and real-time 
OpenCL kernel debugging and memory analysis on GPU devices.

Using CodeXL, developers can:

 Debug OpenCL™ and OpenGL API calls

Break on OpenCL ™ or OpenGL API errors

Set breakpoints on OpenCL ™ API calls

Display image, buffer and texture data

 Debug OpenCL™ kernel source code

Set breakpoints in OpenCL™ kernels

Display OpenCL™ kernel variables

– On a single work item

– Across all the work items in a dispatch

Display OpenCL™ call stacks

The following figure shows the CodeXL user interface:

http://developer.amd.com/tools-and-sdks/heterogeneous-computing/codexl/
http://developer.amd.com/tools-and-sdks/heterogeneous-computing/codexl/
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Figure 4.1 AMD CodeXL User Interface

The CodeXL home page also includes a video illustrating the different features 
of CodeXL.

http://developer.amd.com/tools-and-sdks/opencl-zone/codexl/
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4.1.2 Downloading and installing CodeXL

Download the latest version of CodeXL from the CodeXL home page:
http://developer.amd.com/tools-and-sdks/opencl-zone/codexl/

4.1.2.1  Installing on Windows

1. Download the AMD_CodeXL_Win*.exe file for Windows (32-bit or 64-bit). 

2. Double-click the .exe file to install CodeXL.
The installer guides you through the installation process.
The CodeXL Visual Studio 2010 and 2012 extensions are part of the installer 
package and are installed by default. 

3. Choose Custom installation, and de-select the Visual Studio extensions if 
you do not want to install them. 

4.1.2.2  Installing on Red Hat/CentOS/Fedora Linux

1. Download the AMD_CodeXL_Linux*.rpm 64-bit Linux RPM package.

2. Install Install the RPM package directly:
$ sudo rpm -Uvh AMD_CodeXL_Linux*.rpm

4.1.2.3  Installing on Ubuntu and other Debian based Linux distributions

Either install the tar archive, or install the .deb package.

Tar archive:

1. Download the AMD_CodeXL_Linux*.tar.gz 64-bit Linux tar package.

2. Run:
$ tar –xvzf AMD_CodeXL_Linux*.tar.gz

Debian package:

1. Download the amdcodexl-*.deb 64-bit Linux Debian package.

2. Run:
$ sudo dpkg -i amdcodexl_x.x.x-1_amd64.debGetting Started 
with CodeXL 5 © 2014 Advanced Micro Devices, Inc.

3. Run:
$ sudo apt-get -f install

http://developer.amd.com/tools-and-sdks/opencl-zone/codexl/
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4.1.3 Using CodeXL for profiling

Two modes in CodeXL are particularly useful for profiling:

 GPU Profile Mode

 Analyze Mode

4.1.3.1  GPU Profile Mode

The GPU Profile Mode helps developers analyze and profile OpenCL™ host and 
device code. Developers can profile the entire application or only the kernels by 
using one of the following modes:

 Entire application profile: Collect application trace mode

 Kernel profile: Collect GPU performance counter mode

GPU Profile views:

While running your application in the GPU Profile mode, CodeXL collects valuable 
information, which is summarized in different views:

 API trace: View API calls with inputs and outputs

View API input arguments and output results

Find API hotspots

Determine top ten data transfer and kernel execution operations

Identify failed API calls, resource leaks and best practices

Figure 4.2 CodeXL API Trace
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 Timeline visualization: Visualize host and device execution in a timeline 
chart

View number of OpenCL™ contexts and command queues created 
and the relationships between these items

View data transfer operations and kernel executions on the device

Determine proper synchronization and load balancing 

Figure 4.3 CodeXL Timeline Visualization

 Warnings/Errors: View performance suggestions

Includes a helpful list of best practices

Includes recommendations to improve program performance

 Summary pages: Find top bottlenecks

I/O bound

Compute bound

Figure 4.4 CodeXL Summary Page
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 Kernel occupancy: Estimate OpenCL™ kernel occupancy for AMD APUs 
and GPUs

Visual indication of the limiting kernel resources for number of 
wavefronts in flight

View the maximum number of wavefronts in flight limited by

– Work group size

– Number of allocated scalar or vector registers

– Amount of allocated LDS

– View the maximum resource limit for the GPU device

Figure 4.5 CodeXL Kernel Occupancy
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 Performance counter: View kernel performance bottlenecks.

Figure 4.6 CodeXL Performance Counter
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4.1.3.2  Analyze Mode

The Analyze Mode provides a nice way to begin writing your kernel and to 
compile it to any supported device without the need to have the actual device 
installed on your machine. Upon successful compilation, the Statistics View can 
be used to gather useful statistics regarding the GPU usage of kernels.

The Analyze Mode allows a user to do the following:

 Edit your OpenCL™ kernel inside CodeXL editor

Create a new file

Drag and drop an existing OpenCL™ kernel file

 Highlight keywords

The CodeXL editor highlights keywords for easier editing

Figure 4.7 Highlighting Keywords in CodeXL

 Choose your target device

The Analyze Mode enables to compile to any supported device 
target, without the need to install the device 

 Fix OpenCL™ compiler errors and warnings in which the kernel file is 
the only input

View OpenCL compilation errors and fix immediately.

 Edit OpenCL™ Compiler options with an easy options tab
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CodeXL summarizes all the OpenCL options so that it is easy to use 
them.

Figure 4.8 Summary of OpenCL Options in CodeXL 

 View IL and ISA compilation results

Figure 4.9 Viewing IL and ISA Compilation Results in CodeXL
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 Statistics view: AMD Compiler gathers statistics for the use of GPU 
resources 

Better understanding this data helps tune your kernel for  better  
performance even before running on real GPU

The Statistics tab helps detect where bottlenecks are even before 
running your application

Figure 4.10 CodeXL Statistics Tab

4.2 Debugging CPU Kernels with GDB

This section describes an experimental feature for using the GNU project 
debugger, GDB, to debug kernels on x86 CPUs running Linux or cygwin/minGW 
under Windows.

4.2.1 Setting the Environment

The OpenCL program to be debugged first is compiled by passing the “-g -O0” 
(or “-g -cl-opt-disable”) option to the compiler through the options string to 
clBuildProgram. For example, using the C++ API:

err = program.build(devices,"-g -O0");

To avoid source changes, set the environment variable as follows:

AMD_OCL_BUILD_OPTIONS_APPEND="-g -O0" or 
AMD_OCL_BUILD_OPTIONS="-g -O0"

Below is a sample debugging session of a program with a simple hello world 
kernel. The following GDB session shows how to debug this kernel. Ensure that 
the program is configured to be executed on the CPU. It is important to set 
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CPU_MAX_COMPUTE_UNITS=1. This ensures that the program is executed 
deterministically.

4.2.2 Setting the Breakpoint in an OpenCL Kernel

To set a breakpoint, use:

b [N | function | kernel_name]

where N is the line number in the source code, function is the function name, 
and kernel_name is constructed as follows: if the name of the kernel is 
bitonicSort, the kernel_name is __OpenCL_bitonicSort_kernel. 

Note that if no breakpoint is set, the program does not stop until execution is 
complete.

Also note that OpenCL kernel symbols are not visible in the debugger until the 
kernel is loaded. A simple way to check for known OpenCL symbols is to set a 
breakpoint in the host code at clEnqueueNDRangeKernel, and to use the GDB 
info functions __OpenCL command, as shown in the example below.

4.2.3 Sample GDB Session

The following is a sample debugging session. Note that two separate breakpoints 
are set. The first is set in the host code, at clEnqueueNDRangeKernel(). The 
second breakpoint is set at the actual CL kernel function.

$ export AMD_OCL_BUILD_OPTIONS_APPEND="-g -O0"
$ export CPU_MAX_COMPUTE_UNITS=1
$ gdb BitonicSort
GNU gdb (GDB) 7.1-ubuntu
Copyright (C) 2010 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later 
<http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.  Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...
Reading symbols from /home/himanshu/Desktop/ati-stream-sdk-v2.3-
lnx64/samples/opencl/bin/x86_64/BitonicSort...done.
(gdb) b clEnqueueNDRangeKernel
Breakpoint 1 at 0x403228
(gdb) r --device cpu
Starting program: /home/himanshu/Desktop/ati-stream-sdk-v2.3-
lnx64/samples/opencl/bin/x86_64/BitonicSort --device cpu
[Thread debugging using libthread_db enabled]

Unsorted Input
53 5 199 15 120 9 71 107 71 242 84 150 134 180 26 128 196 9 98 4 102 65 
206 35 224 2 52 172 160 94 2 214 99 .....

Platform Vendor : Advanced Micro Devices, Inc.
Device 0 : AMD Athlon(tm) II X4 630 Processor
[New Thread 0x7ffff7e6b700 (LWP 1894)]
[New Thread 0x7ffff2fcc700 (LWP 1895)]
Executing kernel for 1 iterations
-------------------------------------------
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Breakpoint 1, 0x00007ffff77b9b20 in clEnqueueNDRangeKernel () from 
/home/himanshu/Desktop/ati-stream-sdk-v2.3-lnx64/lib/x86_64/libOpenCL.so
(gdb) info functions __OpenCL
All functions matching regular expression "__OpenCL":

File OCLm2oVFr.cl:
void __OpenCL_bitonicSort_kernel(uint *, const uint, const uint, const 
uint, const uint);

Non-debugging symbols:
0x00007ffff23c2dc0  __OpenCL_bitonicSort_kernel@plt
0x00007ffff23c2f40  __OpenCL_bitonicSort_stub
(gdb) b __OpenCL_bitonicSort_kernel
Breakpoint 2 at 0x7ffff23c2de9: file OCLm2oVFr.cl, line 32.
(gdb) c
Continuing.
[Switching to Thread 0x7ffff2fcc700 (LWP 1895)]

Breakpoint 2, __OpenCL_bitonicSort_kernel (theArray=0x615ba0, stage=0, 
passOfStage=0, width=1024, direction=0) at OCLm2oVFr.cl:32
32     uint sortIncreasing = direction;
(gdb) p get_global_id(0)
$1 = 0
(gdb) c
Continuing.

Breakpoint 2, __OpenCL_bitonicSort_kernel (theArray=0x615ba0, stage=0, 
passOfStage=0, width=1024, direction=0) at OCLm2oVFr.cl:32
32     uint sortIncreasing = direction;
(gdb) p get_global_id(0)
$2 = 1
(gdb) 

4.2.4 Notes

4. To make a breakpoint in a working thread with some particular ID in 
dimension N, one technique is to set a conditional breakpoint when the 
get_global_id(N) == ID. To do this, use:

b [ N | function | kernel_name ] if (get_global_id(N)==ID)

where N can be 0, 1, or 2.

5. For complete GDB documentation, see 
http://www.gnu.org/software/gdb/documentation/ .

6. For debugging OpenCL kernels in Windows, a developer can use GDB 
running in cygwin or minGW. It is done in the same way as described in 
sections 3.1 and 3.2.

Notes: 

– Only OpenCL kernels are visible to GDB when running cygwin or 
minGW. GDB under cygwin/minGW currently does not support host code 
debugging. 

– It is not possible to use two debuggers attached to the same process. 
Do not try to attach Visual Studio to a process, and concurrently GDB to 
the kernels of that process.

– Continue to develop the application code using Visual Studio. Currently, 
gcc running in cygwin or minGW is not supported.
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Chapter 5
OpenCL Static C++ Programming 
Language

5.1 Overview

This extension defines the OpenCL Static C++ kernel language, which is a form 
of the ISO/IEC Programming languages C++ specification1. This language 
supports overloading and templates that can be resolved at compile time (hence 
static), while restricting the use of language features that require dynamic/runtime 
resolving. The language also is extended to support most of the features 
described in Section 6 of the OpenCL 1.2 specification: new data types (vectors, 
images, samples, etc.), OpenCL 1.2 Built-in functions, and more.

5.1.1 Supported Features

The following list contains the major static C++ features supported by this 
extension.

 Kernel and function overloading.

 Inheritance:

– Strict inheritance.

– Friend classes.

– Multiple inheritance.

 Templates:

– Kernel templates.

– Member templates.

– Template default argument.

– Limited class templates (the virtual. keyword is not exposed).

– Partial template specialization

 Namespaces.

 References.

 this operator.

Note that supporting templates and overloading highly improve the efficiency of 
writing code: it allows developers to avoid replication of code when not 
necessary.

1. Programming languages C++. International Standard ISO/IEC 14881, 1998.
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Using kernel template and kernel overloading requires support from the runtime 
API as well. AMD provides a simple extension to clCreateKernel, which 
enables the user to specify the desired kernel.

5.1.2 Unsupported Features

Static C++ features not supported by this extension are:

 Virtual functions (methods marked with the virtual keyword).

 Abstract classes (a class defined only of pure virtual functions).

 Dynamic memory allocation (non-placement new/delete support is not 
provided).

 Exceptions (no support for throw/catch).

 The :: operator.

 STL and other standard C++ libraries.

 The language specified in this extension can be easily expanded to support 
these features.

5.1.3 Relations with ISO/IEC C++

This extension focuses on documenting the differences between the OpenCL 
Static C++ kernel language and the ISO/IEC Programming languages C++ 
specification. Where possible, this extension leaves technical definitions to the 
ISO/IEC specification.

5.2 Additions and Changes to Section 5 - The OpenCL C Runtime

5.2.1 Additions and Changes to Section 5.7.1 - Creating Kernel Objects

In the static C++ kernel language, a kernel can be overloaded, templated, or 
both. The syntax explaining how to do it is defined in Sections 5.3.4 and 5.3.5, 
below.

To support these cases, the following error codes were added; these can be 
returned by clCreateKernel.

 CL_INVALID_KERNEL_TEMPLATE_TYPE_ARGUMENT_AMD if a kernel template 
argument is not a valid type (is neither a valid OpenCL C type or a user 
defined type in the same source file).

 CL_INVALID_KERNEL_TYPE_ARGUMENT_AMD if a kernel type argument, used for 
overloading resolution, is not a valid type (is neither a valid OpenCL C type 
or user-defined type in the same source program).
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5.2.2 Passing Classes between Host and Device

This extension allows a developer to pass classes between the host and the 
device. The mechanism used to pass the class to the device and back are the 
existing buffer object APIs. The class that is passed maintains its state (public 
and private members), and the compiler implicitly changes the class to use either 
the host-side or device-side methods.

On the host side, the application creates the class and an equivalent memory 
object with the same size (using the sizeof function). It then can use the class 
methods to set or change values of the class members. When the class is ready, 
the application uses a standard buffer API to move the class to the device (either 
Unmap or Write), then sets the buffer object as the appropriate kernel argument 
and enqueues the kernel for execution. When the kernel finishes the execution, 
the application can map back (or read) the buffer object into the class and 
continue working on it.

5.3 Additions and Changes to Section 6 - The OpenCL 1.2 C Programming 
Language

5.3.1 Building C++ Kernels

To compile a program that contains static C++ kernels and functions, the 
application must add the following compile option to 
clBuildProgramWithSource: 

-x language 

where language is defined as one of the following:

 clc – the source language is considered to be OpenCL C, as defined in the 
The OpenCL Programming Language version 1.21.

 clc++ - the source language is considered to be OpenCL C++, as defined in 
the following sections of the this document.

-x clc++ is required if the input language is static C++. -x clc++ may not 
be used with -cl-std=CL2.0 and may only be used with -cl-std=CL1.2 if 
-cl-std=CLX.Y is used.

5.3.2 Classes and Derived Classes

OpenCL C is extended to support classes and derived classes as per Sections 
9 and 10 of the static C++ language specification, with the limitation that virtual 
functions and abstracts classes are not supported. The virtual keyword is 
reserved, and the OpenCL C++ compiler is required to report a compile time 
error if it is used in the input program.

1. The OpenCL Programming Language 1.2. Rev15, Khronos 2011.
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This limitation restricts class definitions to be fully statically defined. There is 
nothing prohibiting a future version of OpenCL C++ from relaxing this restriction, 
pending performance implications.

A class definition can not contain any address space qualifier, either for members 
or for methods:

class myClass{
public:

int myMethod1(){ return x;}
void __local myMethod2(){x = 0;}

private:
int x;
__local y; // illegal

};

The class invocation inside a kernel, however, can be either in private or local 
address space:

__kernel void myKernel()
{

myClass c1;
__local myClass c2;
...

}

Classes can be passed as arguments to kernels, by defining a buffer object at 
the size of the class, and using it. The device invokes the adequate device-
specific methods, and accesses the class members passed from the host.

OpenCL C kernels (defined with __kernel) may not be applied to a class 
constructor, destructor, or method, except in the case that the class method is 
defined static and thus does not require object construction to be invoked.

5.3.3 Namespaces

Namespaces are support without change as per [1].

5.3.4 Overloading

As defined in the static C++ language specification, when two or more different 
declarations are specified for a single name in the same scope, that name is said 
to be overloaded. By extension, two declarations in the same scope that declare 
the same name but with different types are called overloaded declarations. Only 
kernel and function declarations can be overloaded, not object and type 
declarations.

As per of the static C++ language specification, a number of restrictions limit how 
functions can be overloaded; these restrictions are defined formally in Section 13 
of the static C++ language specification. Note that kernels and functions cannot 
be overloaded by return type.
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Also, the rules for well-formed programs as defined by Section 13 of the static 
C++ language specification are lifted to apply to both kernel and function 
declarations.

The overloading resolution is per Section 13.1 of the static C++ language 
specification, but extended to account for vector types. The algorithm for “best 
viable function”, Section 13.3.3 of the static C++ language specification, is 
extended for vector types by inducing a partial-ordering as a function of the 
partial-ordering of its elements. Following the existing rules for vector types in the 
OpenCL 1.2 specification, explicit conversion between vectors is not allowed. 
(This reduces the number of possible overloaded functions with respect to 
vectors, but this is not expected to be a particular burden to developers because 
explicit conversion can always be applied at the point of function evocation.)

For overloaded kernels, the following syntax is used as part of the kernel name:

foo(type1,...,typen)

where type1,...,typen must be either an OpenCL scalar or vector type, or can 
be a user-defined type that is allocated in the same source file as the kernel foo.

To allow overloaded kernels, use the following syntax:

__attribute__((mangled_name(myMangledName)))

The kernel mangled_name is used as a parameter to pass to the 
clCreateKernel() API. This mechanism is needed to allow overloaded kernels 
without changing the existing OpenCL kernel creation API.

5.3.5 Templates

OpenCL C++ provides unrestricted support for C++ templates, as defined in 
Section 14 of the static C++ language specification. The arguments to templates 
are extended to allow for all OpenCL base types, including vectors and pointers 
qualified with OpenCL C address spaces (i.e. __global, __local, __private, 
and __constant).

OpenCL C++ kernels (defined with __kernel) can be templated and can be 
called from within an OpenCL C (C++) program or as an external entry point 
(from the host).

For kernel templates, the following syntax is used as part of the kernel name 
(assuming a kernel called foo):

foo<type1,...,typen>

where type1,...,typen must be either OpenCL scalar or vector type, or can be 
a user-defined type that is allocated in the same source file as the kernel foo. In 
this case a kernel is both overloaded and templated:

foo<type1,...,typen>(typen+1,...,typem)

Note that here overloading resolution is done by first matching non-templated 
arguments in order of appearance in the definition, then substituting template 



A M D  A C C E L E R A T E D P A R A L L E L  P R O C E S S I N G

5-6 Chapter 5: OpenCL Static C++ Programming Language
Copyright © 2014 Advanced Micro Devices, Inc. All rights reserved.   

parameters. This allows intermixing of template and non-template arguments in 
the signature.

To support template kernels, the same mechanism for kernel overloading is used. 
Use the following syntax:

__attribute__((mangled_name(myMangledName)))

The kernel mangled_name is used as a parameter to passed to t he 
clCreateKernel() API. This mechanism is needed to allow template kernels 
without changing the existing OpenCL kernel creation API. An implementation is 
not required to detect name collision with the user-specified kernel_mangled 
names involved.

5.3.6 Exceptions

Exceptions, as per Section 15 of the static C++ language specification, are not 
supported. The keywords try, catch, and throw are reserved, and the OpenCL 
C++ compiler must produce a static compile time error if they are used in the 
input program.

5.3.7 Libraries

Support for the general utilities library, as defined in Sections 20-21 of the static 
C++ language specification, is not provided. The standard static C++ libraries 
and STL library are not supported.

5.3.8 Dynamic Operation

Features related to dynamic operation are not supported:

 the virtual modifier.
OpenCL C++ prohibits the use of the virtual modifier. Thus, virtual member 
functions and virtual inheritance are not supported. 

 Dynamic cast that requires runtime check.

 Dynamic storage allocation and deallocation.

5.3.9 OpenCL C Built-in Functions

All the all OpenCL 1.2 built-in functions are supported.
None of the new built-in functions added in OpenCL 2.0 are supported. 

5.4 Examples

5.4.1 Passing a Class from the Host to the Device and Back

The class definition must be the same on the host code and the device code, 
besides the members’ type in the case of vectors. If the class includes vector 
data types, the definition must conform to the table that appears on Section 6.1.2 
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of the OpenCL Programming Specification 1.2, Corresponding API type for 
OpenCL Language types.

Example Kernel Code

Class Test
{

setX (int value);
private:
int x;

}

__kernel foo (__global Test* InClass, ...)
{

If (get_global_id(0) == 0)
InClass->setX(5);

}

Example Host Code

Class Test
{

setX (int value);
private:
int x;

}

MyFunc ()
{

tempClass = new(Test);
... // Some OpenCL startup code – create context, queue, etc.

cl_mem classObj = clCreateBuffer(context,
CL_MEM_USE_HOST_PTR, sizeof(Test),
&tempClass, event);

clEnqueueMapBuffer(...,classObj,...);
tempClass.setX(10);
clEnqueueUnmapBuffer(...,classObj,...); //class is passed to the Device
clEnqueueNDRange(..., fooKernel, ...);
clEnqueueMapBuffer(...,classObj,...); //class is passed back to the Host

}

5.4.2 Kernel Overloading

This example shows how to define and use mangled_name for kernel overloading, 
and how to choose the right kernel from the host code. Assume the following 
kernels are defined:

__attribute__((mangled_name(testAddFloat4))) kernel void
testAdd(global float4 * src1, global float4 * src2, global float4 * dst)
{

int tid = get_global_id(0);
dst[tid] = src1[tid] + src2[tid];

}
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__attribute__((mangled_name(testAddInt8))) kernel void
testAdd(global int8 * src1, global int8 * src2, global int8 * dst)

{
int tid = get_global_id(0);
dst[tid] = src1[tid] + src2[tid];

}

The names testAddFloat4 and testAddInt8 are the external names for the two 
kernel instants. When calling clCreateKernel, passing one of these kernel 
names leads to the correct overloaded kernel.

5.4.3 Kernel Template

This example defines a kernel template, testAdd. It also defines two explicit 
instants of the kernel template, testAddFloat4 and testAddInt8. The names 
testAddFloat4 and testAddInt8 are the external names for the two kernel 
template instants that must be used as parameters when calling to the 
clCreateKernel API.

template <class T>
kernel void testAdd(global T * src1, global T * src2, global T * dst)

{
int tid = get_global_id(0);
dst[tid] = src1[tid] + src2[tid];

}

template __attribute__((mangled_name(testAddFloat4))) kernel void
testAdd(global float4 * src1, global float4 * src2, global float4 * 

dst);

template __attribute__((mangled_name(testAddInt8))) kernel void
testAdd(global int8 * src1, global int8 * src2, global int8 * dst);
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Chapter 6
OpenCL 2.0

6.1 Introduction

The OpenCL 2.0 specification is a significant evolution of OpenCL. It introduces 
features that allow closer collaboration between the host and OpenCL devices, 
such as Shared Virtual Memory (SVM) and device-side enqueue. Other features, 
such as pipes and new image-related additions provide effective ways of 
expressing heterogeneous programming constructs.

The following sections highlight the salient features of OpenCL 2.0 and provide 
usage guidelines. 

 Shared Virtual Memory (SVM)

 Generic Address Space

 Device-side enqueue and workgroup/sub-group level functions

 Atomics and synchronization

 Pipes

 Program-scope global Variables

 Image Enhancements

 Non-uniform work group size

Sample code is included wherever appropriate; complete samples illustrating the 
OpenCL 2.0 features are provided with the AMD APP SDK.

For guidelines on how to migrate from OpenCL 1.2 to OpenCL 2.0 and for 
information about querying for image- and device-specific extensions, see 
Portability considerations.

For a list of the new and deprecated functions, see Appendix F, “New and 
deprecated functions in OpenCL 2.0.”

6.2 Shared Virtual Memory (SVM)

6.2.1 Overview

In OpenCL 1.2, the host and OpenCL devices do not share the same virtual 
address space. Consequently, the host memory, the device memory, and 
communication between the host and the OpenCL devices, need to be explicitly 
specified and managed. Buffers may need to be copied over to the OpenCL 

http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
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device memory for processing and copied back after processing. To access 
locations within a buffer (or regions within an image), the appropriate offsets must 
be passed to and from the OpenCL devices; a host memory pointer cannot be 
used on the OpenCL device.

In OpenCL 2.0, the host and OpenCL devices may share the same virtual 
address space. Buffers need not be copied over between devices. When the host 
and the OpenCL devices share the address space, communication between the 
host and the devices can occur via shared memory (pointers). This simplifies 
programming in heterogeneous contexts.

Support for SVM does not imply or require that the host and the OpenCL devices 
in an OpenCL 2.0 compliant architecture share actual physical memory. The 
OpenCL runtime manages the transfer of data between the host and the OpenCL 
devices; the process is transparent to the programmer, who sees a unified 
address space.

A caveat, however, concerns situations in which the host and the OpenCL 
devices access the same region of memory at the same time. It would be highly 
inefficient for the host and the OpenCL devices to have a consistent view of the 
memory for each load/store from any device/host. In general, the memory model 
of the language or architecture implementation determines how or when a 
memory location written by one thread or agent is visible to another. The memory 
model also determines to what extent the programmer can control the scope of 
such accesses.

OpenCL 2.0 adopts the memory model defined in C++11 with some extensions. 
The memory orders taken from C++11 are: "relaxed", "acquire", "release", 
“acquire-release”, and "sequential consistent".

OpenCL 2.0 introduces a new (C++11-based) set of atomic operations with 
specific memory-model based semantics. Atomic operations are indivisible: a 
thread or agent cannot see partial results. The atomic operations supported are: 

 atomic_load/store

 atomic_init

 atomic_work_item_fence

 atomic_exchange

 atomic_compare_exchange

 atomic_fetch_<op>, where <op> is "add", "sub", "xor", "and", or "or"

OpenCL 2.0 introduces the concept of "memory scope", which limits the extent 
to which atomic operations are visible. For example:

 "workgroup" scope means that the updates are to be visible only within the 
work group

 "device" scope means that the updates are to be visible only within the 
device (across workgroups within the device)
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 "all-svm-devices" scope means the updates are available across devices 
(GPUs and the host/CPU). 

OpenCL 2.0 further differentiates between coarse-grained SVM buffer sharing 
and fine-grained SVM (buffer and system) sharing mechanisms. These 
mechanisms define the granularity at which the SVM buffers are shared. 

Updates to coarse-grained or fine-grained SVM are visible to other devices at 
synchronization points:

 For coarse-grained SVM, the synchronization points are: the mapping or un-
mapping of the SVM memory and kernel launch or completion. This means 
that any updates are visible only at the end of the kernel or at the point of 
un-mapping the region of memory. 

Coarse-grained buffer memory has a fixed virtual address for all the devices 
it is allocated on. In the AMD implementation, the physical memory is 
allocated on Device Memory.

 For fine-grained SVM, the synchronization points include those defined for 
coarse-grained SVM as well as atomic operations. This means that updates 
are visible at the level of atomic operations on the SVM buffer (for fine-
grained buffer SVM, allocated with the CL_MEM_SVM_ATOMICS flag) or the 
SVM system, i.e. anywhere in the SVM (for fine-grained system SVM). 

Fine-grained buffer memory has the same virtual address for all devices it is 
allocated on. In the AMD implementation, the physical memory is allocated 
on the Device-Visible Host Memory. If the fine grain buffer is allocated with 
the CL_MEM_SVM_ATOMICS flag, the memory will be GPU-CPU coherent.

The OpenCL 2.0 specification mandates coarse-grained SVM but not fine-
grained SVM. 

For details, see Section 3.3 of the OpenCL 2.0 specification. 

6.2.2 Usage

In OpenCL 2.0, SVM buffers shared between the host and OpenCL devices are 
created by calling clSVMAlloc (or malloc/new in the case of fine-grain system 
support). The contents of such buffers may include pointers (into SVM buffers). 
Pointer-based data structures are especially useful in heterogenous 
programming scenarios. A typical scenario is as follows:

1. Host creates SVM buffer(s) with clSVMAlloc

2. Host maps the SVM buffer(s) with the blocking call clEnqueueSVMMap

3. Host fills/updates the SVM buffer(s) with data structures, including pointers 

4. Host unmaps the SVM buffer(s) by using clEnqueueSVMUnmap

5. Host enqueues processing kernels, passing SVM buffers to the kernels with 
calls to clSetKernelArgSVMPointer and/or clSetKernelExecInfo
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6. The OpenCL 2.0 device processes the structures in SVM buffer(s) including 
following/updating pointers.

7. Repeat step 2 through 6 as necessary.

Note that the map and unmap operations in Steps 2 and 4 may be eliminated if 
the SVM buffers are created by using the CL_MEM_SVM_FINE_GRAIN_BUFFER 
flag, which may not be supported on all devices.

6.2.2.1  Coarse-grained memory

Some applications do not require fine-grained atomics to ensure that the SVM is 
consistent across devices after each read/write access. After the initial 
map/creation of the buffer, the GPU or any other devices typically read from 
memory. Even if the GPU or other devices write to memory, they may not require 
a consistent view of the memory.

For example, while searching in parallel on a binary search tree , coarse-grain 
buffers are usually sufficient. In general, coarse-grain buffers provide faster 
access compared to fine grain buffers as the memory is not required to be 
consistent across devices.

for (i = 0; i < keys_per_wi; i++) {

key = search_keys[init_id + i];

tmp_node = root;

while (1) {

if (!tmp_node || (tmp_node->value == key))

break;

tmp_node = (key < tmp_node->value) ? tmp_node-   

>left : tmp_node->right;

}

found_nodes[init_id + i] = tmp_node;

} 

In the above example, the binary search tree root is created using coarse-
grain SVM on the host:

svmTreeBuf = clSVMAlloc(context, CL_MEM_READ_WRITE, 
numNodes*sizeof(node), 0);

svmSearchBuf = clSVMAlloc(context, CL_MEM_READ_WRITE, 
numKeys*sizeof(searchKey), 0);
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The host creates two buffers, svmTreeBuf and svmSearchBuf, to hold the given 
tree and the search keys, respectively. After populating the given tree, these two 
buffers are passed to the kernel as parameters.

The next task is to create the tree and populate the svmTreeBuf using 
clSVMEnqueueMap and clSVMEnqueueUnmap. The host-code method, 
cpuCreateBinaryTree, illustrates this mechanism; note the calls to these 
map/unmap APIs.

The host then creates the keys to be searched in svmSearchBuf, as the 
cpuInitSearchKeys method illustrates. Next, it enqueues the kernel to search 
the binary tree for the given keys in the svmSearchBuf, and it sets the parameters 
to the kernel using clSetKernelArgSVMPointer:

int status = clSetKernelArgSVMPointer(sample_kernel, 0, (void 
*)(svmTreeBuf));

status = clSetKernelArgSVMPointer(sample_kernel, 1, (void 
*)(svmSearchBuf));

Note that the routine passes both svmTreeBuf and svmSearchBuf to the kernel 
as parameters. The following node structure demonstrates how to create the tree 
on the host using pointers to the left and right children:

typedef struct nodeStruct
{

int value;
struct nodeStruct* left;
struct nodeStruct* right;

} node;

At this point, the advantage of using SVM becomes clear. Because the structure 
and its nodes are SVM memory, all the pointer values in these nodes are valid 
on the GPUs as well.

The kernel running on the OpenCL 2.0 device can directly search the tree as 
follows:

while(NULL != searchNode)
{

if(currKey->key == searchNode->value)
{
/* rejoice on finding key */
currKey->oclNode   = searchNode;
searchNode         = NULL;
}
else if(currKey->key < searchNode->value)
{
/* move left */
searchNode = searchNode->left;
}
else
{
/* move right */
searchNode = searchNode->right;
}
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}

Each work item searches one element in svmSearchKeys in parallel and sets 
oclNode in the searchKey structure for that node.

Updates to the tree occur on the host (CPU) or on the GPU, but not on both 
simultaneously.

Because the tree is created on the host, and because OpenCL 1.2 disallows 
SVM, implementing these steps is difficult in OpenCL 1.2. In OpenCL 1.2, you 
must store the tree as arrays, copy the arrays to the GPU memory (specifying 
the appropriate offsets), and then copy the arrays back to the host.

The “data” is the tree created by the host as a coarse-grain buffer and is passed 
to the kernel as an input pointer. 

Figure 6.1 GPU Processing with and without SVM Comparison

Note: All numbers were obtained on a Kaveri APU with 32 GB RAM running 
Windows 8.1. All numbers are in milli-seconds (ms).

The above table shows the performance of the 2.0 implementation over the 1.2 
implementation. As you can see, the GPU times mentioned under the OpenCL 
1.2 column include the GPU run time, time to transfer the buffers from the host 
to the device, the time required to transform the buffers into arrays and offsets, 
and the time required to transfer the buffers from the device back to the host, 
respectively.

Finally, more than 5M nodes could not be allocated in 1.2, as the allowable 
memory allocation was limited by the amount of memory that could be used on 
the device. Overall, the 2.0 version exceeds the 1.2 version in both performance 
and usability.

Tree (size in M)
CPU – time
(ms) GPU (OpenCL 2.0)

GPU (OpenCL 1.2) + Host-
device buffer copy + Buffer 
transform into arrays/offsets + 
Device-host buffer copy

1 23.46 5.17 3.22 +1.92 +49.58 +8.50

5 86.11 24.87 13.95 +4.15 +259.12 +34.30

10 180.73 51.58 N/A

25 381.77 129.58 N/A
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6.3 Generic Address Space

6.3.1 Overview

In OpenCL 1.2, all pointer parameters in a function definition must have address 
spaces associated with them. (The default address space is the private address 
space.) This necessitates creating an explicit version of the function for each 
desired address space.

OpenCL 2.0 introduces a new address space called the generic address space.  
Data cannot be stored in the generic address space, but a pointer to this space 
can reference data located in the private, local, or global address spaces. A 
function with generic pointer arguments may be called with pointers to any 
address space except the constant address space. Pointers that are declared 
without pointing to a named address space, point to the generic address space. 
However, such pointers must be associated with a named address space before 
they can be used. Functions may be written with arguments and return values 
that point to the generic address space, improving readability and 
programmability. 

6.3.2 Usage

6.3.2.1  Generic example

In OpenCL 1.2, the developer needed to write three functions for a pointer p that 
can reference the local, private, or global address space:

void fooL (local int *p) { … }

void fooP (private int *p) { … }

void fooG (global int *p) { … }

In OpenCL 2.0, the developer needs to write only one function:

void foo (int *p)

As foo is a generic function, the compiler will accept calls to it with pointers to 
any address space except the constant address space.

The generic address space feature also allows one to define a pointer-based 
data structure that can apply to different address spaces. In OpenCL 1.2, 
different structure types must be defined for different address spaces; in OpenCL 
2.0, a single structure suffices, as shown below.

struct node{

  struct node* next;  // generic address  space pointer

} ;
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Note: The OpenCL 2.0 spec itself shows most built-in functions that accept 
pointer arguments as accepting generic pointer arguments.

6.3.2.2  AMD APP SDK example

In the APP SDK sample, addMul2d is a generic function that uses generic 
address spaces for its operands. The function computes the convolution sum of 
two vectors. Two kernels compute the convolution: one uses data in the global 
address space (convolution2DUsingGlobal); the other uses the local 
address space (sepiaToning2DUsingLocal). The use of a single function 
improves the readability of the source. 

float4 addMul2D (uchar4 *src, float *filter, int2 filterDim, int 
width)

{ int i, j;

float4 sum = (float4)(0);

for(i = 0; i < (filterDim.y); i++)

{

for(j = 0; j < (filterDim.x); j++)

{

sum += 
(convert_float4(src[(i*width)+j]))*((float4)(filter[(i*filterDim.x)

+j]));

}

}

return sum;

}

Note: The compiler will try to resolve the address space at compile time. 
Otherwise, the runtime will decide whether the pointer references the local or the 
global address space. For optimum performance, the code must make it easy for 
the compiler to detect the pointer reference by avoiding data-dependent address 
space selection, so that run-time resolution -- which is costly -- is not required.

6.4 Device-side enqueue and workgroup/sub-group level functions

6.4.1 Device-side enqueue

In OpenCL 1.2, a kernel cannot be enqueued from a currently running kernel. 
Enqueuing a kernel requires returning control to the host -- potentially 
undermining performance.

OpenCL 2.0 allows kernels to enqueue other kernels. It provides a new construct, 
"clang blocks," and new built-in functions that allow a parent kernel to queue child 
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kernels. In addition, OpenCL 2.0 deprecates the run-time API call 
clCreateCommandQueue, in favor of a new call, 
clCreateCommandQueueWithProperties, that can create device-side 
command queues. 

Because it eliminates the overhead of returning kernel-launch control to the host, 
device-side enqueue can in many cases improve application performance. Some 
platforms (such as AMD’s) provide a standard way of enqueuing work to the 
hardware, which can further improve the performance. Device-side enqueue has 
been observed to reduce by the overhead of enqueuing by more than 3x in some 
cases.

Applications that are inherently recursive or that require additional processing 
can derive particular benefit. A classic example of the latter case is a tree search 
that discovers new nodes when traversing from the root to the leaves. 

Device enqueue is also useful in determining when all the workgroups of the 
parent kernel have finished executing. Doing so in OpenCL 1.2 requires waiting 
on a completion event from that kernel. If the host needs the result of a 
computation, the routine may also need to wait on the host. Since OpenCL 2.0 
allows the parent kernel to launch child kernels, it can eliminate this delay.

6.4.2 Workgroup/subgroup-level functions

OpenCL 2.0 introduces new built-in functions that operate at the workgroup or 
subgroup level. (A workgroup comprises one or more subgroups; the vendor 
handles the exact subgroup implementation.) For example, on AMD platforms, a 
subgroup maps to a “wavefront”. (For details, see the AMD OpenCL User Guide.)

Basically, a wavefront is an execution unit on the GPU. The OpenCL specification 
requires that all work items in a workgroup/subgroup executing the kernel handle 
these new functions; otherwise, their results may be undefined.

OpenCL 2.0 defines the following new built-in functions. Note that it also defines 
similar functions for subgroups under the cl_khr_subgroups extensions in 
CL_DEVICE_EXTENSIONS.

1. work_group_all and work_group_any: These functions test a given 
predicate on all work items in the workgroup. The “all” version effectively 
performs an AND operation on all predicates and returns the result to all work 
items; similarly, the “any” operation performs an OR operation. Thus, using 
the “all” function returns true if the predicate is true for all work items; “any” 
returns true if it is true for at least one work item.

2. work_group_broadcast: This function broadcasts a local value from 
each work item to all the others in the workgroup.

3. work_group_reduce: Given an operation, work_group_reduce 
performs the reduction operation on all work items and returns the result. The 
operation can be min, max or add. For example, when called for an array 
using the add operation, the function returns the sum of the array elements.
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4. work_group_inclusive/exclusive_scan: The “scan” operation is a 
prefix operation, which performs a reduction up to the work-item ID. If it 
includes the current ID, the function applies an inclusive scan; otherwise, if 
it covers everything up to but not including the current work item, it applies 
an exclusive scan. Again, the operation can be min, max or add.

OpenCL 2.0 introduces a Khronos sub-group extension. Sub-groups are a logical 
abstraction of the hardware SIMD execution model akin to wavefronts, warps, or 
vectors and permit programming closer to the hardware in a vendor-independent 
manner.  This extension includes a set of cross-sub-group built-in functions that 
match the set of the cross-work-group built-in functions specified above.

6.4.3 Usage

6.4.3.1  Iterate until convergence

Suppose a complex process requires 4 kernels, A, B, C, and Check, and that 
these kernels must be run in order repeatedly until the Check kernel produces a 
value indicating that the process has converged. 

In OpenCL 1.2, the host side code to perform this might be structured as follows:

1. Enqueue kernel A

2. Enqueue kernel B

3. Enqueue kernel C

4. Enqueue kernel Check

5. Enqueue blocking map of Check result, e.g. with clEnqueueMapBuffer 

6. If Check result is not "Converged" then:
Enqueue unmap of Check result

7. Go to Step 1

However, with device-side enqueue in OpenCL 2.0, the Check kernel may be 
altered to enqueue blocks that carry out A, B, C, and Check when it detects that 
convergence has not been reached. This avoids a potentially costly interaction 
with the host on each iteration.  Also, a slight modification of Check might allow 
the replacement of the entire loop above with a single host-side enqueue of the 
Check kernel.

6.4.3.2  Data-dependent refinement

Consider a search or computational process that works from coarse levels to 
increasingly finer levels that operates something like this:

1. Search/Compute over current region

2. Loop over sub-regions in current region
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3. If a sub-region is interesting:

1. Refine the sub-region

2. Apply a process to the refined sub-region

With OpenCL 1.2, this process would require a complex interaction between the 
host and the OpenCL device. The device-side kernel would need to somehow 
mark the sub-regions requiring further work, and the host side code would need 
to scan all of the sub-regions looking for the marked ones and then enqueue a 
kernel for each marked sub-region. This process is made more difficult by the 
lack of globally visible atomic operations in OpenCL 1.2.

However, with OpenCL 2.0, rather than just marking each interesting sub-region, 
the kernel can instead launch a new sub-kernel to process each marked sub-
region. This significantly simplifies the code and improves efficiency due to the 
elimination of the interactions with, and dependence on, the host.

6.4.3.3  Binary search using device-side enqueue 

The power of device enqueue is aptly illustrated in the example of binary search. 
To make the problem interesting, multiple keys in a sorted array will be searched 
for. The versions written for OpenCL 1.2 and 2.0 will also be compared with 
respect to programmability and performance.

A binary search looks for a given key in a sorted sequence by dividing the 
sequence in two equal parts and then recursively checking the part that contains 
the key. Because a typical GPU processes more than two work items, we divide 
the sequence into several parts (globalThreads), and each work item 
searches its part for the key. Furthermore, to make things more interesting, a 
large number of keys are searched. At every recursion stage, the amount of work 
varies with the chunk size. Thus, the algorithm is a good candidate for device-
side enqueue.

The OpenCL 1.2 version of the code that performs binary search is as follows:

kernel void binarySearch_mulkeys( global int *keys, global uint 
*input, const unsigned int numKeys, global int *output)

{

    int gid = get_global_id(0);

    int lBound = gid * 256;

    int uBound = lBound + 255;    

    for(int i = 0; i < numKeys; i++)

    {

        if(keys[i] >= input[lBound] && keys[i] <=input[uBound])

            output[i]=lBound;       

     }  
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}

The search for multiple keys is done sequentially, while the sorted array is 
divided into 256 sized chunks. The NDRange is the size of the array divided by 
the chunk size. Each work item checks whether the key is present in the range 
and if the key is present, updates the output array.

The issue with the above approach is that if the input array is very large, the 
number of work items (NDRange) would be very large. The array is not divided 
into smaller, more-manageable chunks.

In OpenCL 2.0, the device enqueue feature offers clear advantages in binary 
search performance. 

The kernel is rewritten in OpenCL 2.0 to enqueue itself. (For full details, see the 
complete sample in the AMD APP SDK.) Each work item in the 
binarySearch_device_enqueue_multiKeys_child kernel searches its 
portion of the sequence for the keys; if it finds one, it updates the array bounds 
for that key and also sets a variable, , to declare that another enqueue is 
necessary. If all work items report failure, the search stops and reports that the 
sequence contains no keys.

Finally, the kernel launches itself again using device enqueue, but with new 
bounds:

void (^binarySearch_device_enqueue_wrapper_blk)(void) = 
^{binarySearch_device_enqueue_multiKeys_child(outputArray,

sortedArray, 

subdivSize,

globalLowerIndex,

keys

,nKeys

,parentGlobalids,globalThreads);};

int err_ret = 
enqueue_kernel(defQ,CLK_ENQUEUE_FLAGS_WAIT_KERNEL,ndrange1,binarySe
arch_device_enqueue_wrapper_blk);

It also checks for missing keys; absent any such keys, the search stops by 
forgoing further enqueues:

/**** Search continues only if at least one key is found in 
previous search ****/

int Flag = atomic_load_explicit(&,memory_order_seq_cst);

if(Flag == 0)

return;
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The advantage is that when the input array is large, the OpenCL 2.0 version 
divides the input array into 1024-sized chunks. The chunk in which the given key 
falls is found and another kernel is enqueued which further divides it into 1024-
sized chunks, and so on. In OpenCL 1.2, as the whole array is taken as the 
NDRange, a huge number of work groups require processing. 

The following figure shows how the OpenCL 2.0 version compares to the 
OpenCL 1.2 as the array increases beyond a certain size.

Figure 6.2 Binary Search with and without Device-side Enqueue 
Comparison

Note: These numbers are for an A10-7850K (3.7GHz) processor with 4GB of 
RAM running Windows 8.1.

The above figure shows the performance benefit of using OpenCL 2.0 over the 
same sample using OpenCL 1.2. In OpenCL 2.0, the reduced number of kernel 
launches from the host allow superior performance. The kernel enqueues are 
much more efficient when done from the device. 

Device enqueue is a powerful feature, as the examples above help show. It can 
be especially useful when repeatedly applying a set of kernels to a data structure 
in accordance with a condition. For applications with dynamic data parallelism at 
run time-such as when searching a large space for which the amount of 
parallelism or the problem size is statically unknown from the outset-device 
enqueue offers many benefits.

The above examples also exemplify the new workgroup and subgroup functions 
that OpenCL 2.0 introduces. These functions can efficiently perform computation 
at the workgroup level because they can map directly to hardware instructions at 
the workgroup/subgroup level. 
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6.5 Atomics and synchronization

6.5.1 Overview

In OpenCL 1.2, only work-items in the same workgroup can synchronize. 

OpenCL 2.0 introduces a new and detailed memory model which allows 
developers to reason about the effects of their code on memory, and in particular 
understand whether atomic operations and fences used for synchronization 
ensure the visibility of variables being used to communicate between threads. In 
conjunction with the new memory model, OpenCL 2.0 adds a new set of atomic 
built-in functions and fences derived from C++11 (although the set of types is 
restricted), and also deprecates the 1.2 atomic built in functions and fences.

These additions allow synchronization between work-items in different work-
groups, as well as fine-grained synchronization with the host using atomic 
operations on memory in fine-grained SVM buffers (allocated with the 
CL_MEM_SVM_ATOMICS flag) for fine-grained SVM system memory. 

6.5.2 Usage

The following examples to illustrate the use of atomics are part of the AMD APP 
SDK. 

6.5.2.1  Atomic Loads/Stores

This sample illustrates atomic loads/stores with the use of memory orders. 

The first step is to create this memory on the host:

buffer = (int *) clSVMAlloc(context, CL_MEM_SVM_FINE_GRAIN_BUFFER, 
(N+1)*sizeof(int), 4);

atomicBuffer = (int *) clSVMAlloc(context, 
CL_MEM_SVM_FINE_GRAIN_BUFFER | CL_MEM_SVM_ATOMICS, 

(N+1)*sizeof(int), 4);

Note the flags sent as parameters: CL_MEM_SVM_FINE_GRAIN_BUFFER and 
CL_MEM_SVM_ATOMICS. The following kernel runs on all work items in parallel. 
It will atomically load atomicBuffer[0], check whether its value is 99, and wait 
till it is 99. The acquire memory order is used to indicate that the latest update 
must be done on the host and to ensure that the local L1 cache is not read from. 
This will be made 99 by the host (CPU) by 

std::atomic_store_explicit ((std::atomic<int> *)&atomicBuffer[0], 
99, std::memory_order_release);

The host uses the C++11 compiler and the same memory model.

kernel void ldstore(volatile global int *buffer, global int*  
atomicBuffer)
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{

        int i;

        while (atomic_load_explicit ((global atomic_int 
*)&atomicBuffer[0], memory_order_acquire) != 99);

        i = get_global_id(0);

         buffer[i] += i;

         atomic_store_explicit ((global atomic_int 
*)&atomicBuffer[i], (100+i), memory_order_release);

}

The kernel next stores (100+i), where i is the ID of the work-item into 
atomicBuffer[i]. The order used is memory_order_release which 
ensures that the updated copy reaches the CPU which is waiting for it to report 
PASS for the test. 

After the atomic operation, the updates on fine-grain variables (such as buffer) 
will also be available at the host. The CPU checks for the following to ensure that 
the results are OK:

for (i=0;i<N;i++)

while(std::atomic_load_explicit ((std::atomic<int> 
*)&atomicBuffer[i], std::memory_order_acquire) != 

(100+i));

/* check the results now */

for (i=0;i<N;i++)

if (buffer[i] != (64+i))

    printf(" Test Failed \n");

printf (" Test Passed! \n");

6.5.2.2  Atomic Compare and Exchange (CAS)

This sample illustrates the use of the atomic CAS operation typically used for 
"lock-free" programming, in which a critical section can be created without having 
to use waiting mutexes/semaphores. The following kernel simultaneously inserts 
the IDs of various work items into the "list" array by using atomic CAS operation. 
The same loop also runs on the host and inserts the other half (N) work items. 
In this way, 2*N numbers are inserted into this "list".

kernel void linkKernel(__global int *list) {

int head, i;

i = get_global_id(0) + 1;

head = list[0];
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if (i != get_global_size(0)) {

do {

list[i] = head;

      } while (!atomic_compare_exchange_strong((global 
atomic_int *) &list[0], &head,i), memory_order_release, 

memory_order_acquire, memory_scope_system);

}

}

Note how there is no wait to enter the critical section, but list[0] and head are 
updated atomically. On the CPU too, a similar loop runs. Again note that the 
variables "list"and "head" must be in fine-grain SVM buffers. 
memory_order_release and memory_scope_system are used to ensure 
that the CPU gets the updates -- hence the name "platform atomics."

6.5.2.3  Atomic Fetch

This sample illustrates the use of the atomic fetch operation. The fetch operation 
is an RMW (Read-Modify-Write) operation. The following kernel computes the 
maximum of the N numbers in array "A". The result of the intermediate 
comparisons is computed and the result is placed in a Boolean array "B". After 
the matrix "B" is computed, the row (i) is computed. The row which has all 1s will 
be the maximum (C[i]). 

kernel void atomicMax(volatile global int *A, global int *B, global 
int *C, global int *P)

{

int  i = get_global_id(0);

int  j = get_global_id(1);

int N = *P, k;

if (A[i] >= A[j]) B[i*N+j] = 1;

else B[i*N+j] = 0;

if (j == 0) {

       C[i] = 1;

        for (k=0;k<N;k++)

  atomic_fetch_and_explicit((global atomic_int *)&C[i], 
B[i*N+k], memory_order_release, memory_scope_device);

}

}

Similarly, another sample includes the following kernel that increments 2*N times, 
N times in the kernel and another N times on the host:
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kernel void counter(__global int *count)

{

   atomic_fetch_add((atomic _int)count, 1);

   //(*count)++;

}

Note: If atomic_fetch_add is not used and instead an incrementing count (as 
performed in the commented line) is used, the sum will not be computed 
correctly. 

6.6 Pipes

6.6.1 Overview

OpenCL 2.0 introduces a new mechanism, pipes, for passing data between 
kernels. A pipe is essentially a structured buffer containing some space for a set 
of "packets"--kernel-specified type objects, and for bookkeeping information. As 
the name suggests, these packets of data are ordered in the pipe (as a FIFO). 

Pipes are accessed via special read_pipe and write_pipe built-in functions. 
A given kernel may either read from or write to a pipe, but not both.  Pipes are 
only "coherent" at the standard synchronization points; the result of concurrent 
accesses to the same pipe by multiple kernels (even if permitted by hardware) 
is undefined. A pipe cannot be accessed from the host side; it can only be 
accessed by using the kernel built-in functions.

Pipes are created on the host with a call to clCreatePipe, and may be passed 
between kernels. Pipes may be particularly useful when combined with device-
size enqueue for dynamically constructing computational data flow graphs.

There are two types of pipes: a read pipe, from which a number of packets can 
be read; and a write pipe, to which a number of packets can be written.

Note: A pipe specified as read-only cannot be written into and a pipe specified 
as write-only cannot be read from. A pipe cannot be read from and written into 
at the same time.

6.6.2 Functions for accessing pipes

A new host API function has been added into the OpenCL 2.0 spec to create the 
Pipe. 

cl_mem    clCreatePipe (  cl_context context, 
cl_mem_flags flags,  
cl_uint pipe_packet_size,  
cl_uint pipe_max_packets,  
const cl_pipe_properties * properties,  
cl_int *errcode_ret) 
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The memory allocated in the above function can be passed to kernels as read-
only or write-only pipes. The pipe objects can only be passed as kernel 
arguments or kernel functions and cannot be declared inside a kernel or as 
program-scoped objects.

Also, a set of built-in functions have been added to operate on the pipes. The 
important ones are:

read_pipe (pipe p, gentype *ptr: for reading packet from pipe p into ptr.

write_pipe (pipe p, gentype *ptr: for writing packet pointed to by ptr 
to pipe p.

To ensure you have enough space in the pipe structure for reading and writing 
(before you actually do it), you can use built-in functions to “reserve” enough 
space. For example, you could reserve room by calling reserve_read_pipe 
or reserve_write_pipe. These functions return a reservation ID, which can 
be used when the actual operations are performed. Similarly, the standard has 
built-in functions for workgroup level reservations, such as 
work_group_reserve_read_pipe and 
work_group_reserve_write_pipe and for the workgroup order (in the 
program). These workgroup built-in functions operate at the workgroup level. 
Ordering across workgroups is undefined. Calls to commit_read_pipe and 
commit_write_pipe, as the names suggest, commit the actual operations 
(read/write).

6.6.3 Usage

The following example code illustrates a typical usage of pipes in the example 
code. The code contains two kernels: producer_kernel, which writes to the 
pipe, and consumer_kernel, which reads from the same pipe. In the example, 
the producer writes a sequence of random numbers; the consumer reads them 
and creates a histogram.

The host creates the pipe, which both kernels will use, as follows:

rngPipe = clCreatePipe(context,
               CL_MEM_READ_WRITE,
               szPipePkt,
               szPipe,
               NULL,
               &status);

This code makes a pipe that the program kernels can access (read/write). The 
host creates two kernels, producer_kernel and consumer_kernel. The 
producer kernel first reserves enough space for the write pipe:

//reserve space in pipe for writing random numbers.
reserve_id_t rid = work_group_reserve_write_pipe(rng_pipe, 
szgr);

Next, the kernel writes and commits to the pipe by invoking the following 
functions:
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write_pipe(rng_pipe,rid,lid, &gfrn);

work_group_commit_write_pipe(rng_pipe, rid);

Similarly, the consumer kernel reads from the pipe:

//reserve pipe for reading
reserve_id_t rid = work_group_reserve_read_pipe(rng_pipe, 
szgr);

if(is_valid_reserve_id(rid)) {

  //read random number from the pipe.

  read_pipe(rng_pipe,rid,lid, &rn);

  work_group_commit_read_pipe(rng_pipe, rid);

  }

The consumer_kernel then uses this set of random number and constructs the 
histogram. The CPU creates the same histogram and verifies whether the 
histogram created by the kernel is correct. Here, lid is the local id of the work 
item, obtained by get_local_id(0).

The example code demonstrates how you can use a pipe as a convenient data 
structure that allows two kernels to communicate. 

In OpenCL 1.2, this kind of communication typically involves the host – although 
kernels can communicate without returning control to the host. Pipes, however, 
ease programming by reducing the amount of code that some applications 
require. 

6.7 Program-scope global Variables

6.7.1 Overview

OpenCL 1.2 permits the declaration of only constant address space variables at 
program scope.

OpenCL 2.0 permits the declaration of variables in the global address space at 
program (i.e. outside function) scope. These variables have the lifetime of the 
program in which they appear, and may be initialized.  The host cannot directly 
access program-scope variables; a kernel must be used to read/write their 
contents from/to a buffer created on the host.

Program-scope global variables can save data across kernel executions. Using 
program-scope variables can potentially eliminate the need to create buffers on 
the host and pass them into each kernel for processing.  However, there is a limit 
to the size of such variables. The developer must ensure that the total size does 
not exceed the value returned by the device info query: 
CL_DEVICE_MAX_GLOBAL_VARIABLE_SIZE.
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6.8 Image Enhancements 

6.8.1 Overview

OpenCL 2.0 introduces significant enhancements for processing images. 

A read_write access qualifier for images has been added. The qualifier allows 
reading from and writing to certain types of images (verified against 
clGetSupportedImageFormats by using the 
CL_MEM_KERNEL_READ_AND_WRITE flag) in the same kernel, but reads must 
be sampler-less.  An atomic_work_item_fence with the 
CLK_IMAGE_MEM_FENCE flag and the memory_scope_work_item memory 
scope is required between reads and writes to the same image to ensure that 
the writes are visible to subsequent reads. If multiple work-items are writing to 
and reading from multiple locations in an image, a call to 
work_group_barrier with the CLK_IMAGE_MEM_FENCE flag is required.  

OpenCL 2.0 also allows 2D images to be created from a buffer or another 2D 
image and makes the ability to write to 3D images a core feature. This extends 
the power of image operations to more situations.  

The function clGetSupportedImageFormats returns a list of the image 
formats supported by the OpenCL platform. The Image format has two 
parameters, channel order and data type. The following lists some image formats 
OpenCL supports:

Channel orders: CL_A, CL_RG, CL_RGB, CL_RGBA.
Channel data type: CL_UNORM_INT8, CL_FLOAT.

OpenCL 2.0 provides improved image support, specially support for sRGB 
images and depth images. 

6.8.2 sRGB

sRGB is a standard RGB color space that is used widely on monitors, printers, 
digital cameras, and the Internet. Because the linear RGB value is used in most 
image processing algorithms, processing the images often requires converting 
sRGB to linear RGB.

OpenCL 2.0 provides a new feature for handling this conversion directly. Note 
that only the combination of data type CL_UNORM_INT8 and channel order 
CL_sRGBA is mandatory in OpenCL 2.0. The AMD implementations support this 
combination. The remaining combinations are optional in OpenCL 2.0. 

When not using the mandatory combination (CL_sRGBA, CL_UNORM_INT8), the 
clGetSupportedImageFormats function must be used to get a list of 
supported image formats and data types before using the sRGB image,

Creating sRGB image objects is similar to creating an image object of existing 
supported channel order with OpenCL 2.0. The following snippet shows how to 
create CL_sRGBA image objects by using the read_image call.
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A new sRGB image can also be created based on an existing RGB image object, 
so that the kernel can implicitly convert the sRGB image data to RGB. This is 
useful when the viewing pixels are sRGB but share the same data as the existing 
RGB image. 

After an sRGB image object has been created, the read_imagef call can be 
used in the kernel to read it transparently. read_imagef implicitly converts 
sRGB values into linear RGB. Converting sRGB into RGB in the kernel explicitly 
is not necessary if the device supports OpenCL 2.0. Note that only 
read_imagef can be used for reading sRGB image data because only the 
CL_UNORM_INT8 data type is supported with OpenCL 2.0. 

The following is a kernel sample that illustrates how to read an sRGB image 
object.

// Read sRGBA image object (input) and convert it to linear RGB 
values(results)

__kernel void sample_kernel( read_only image2d_t input, sampler_t 
imageSampler,  __global float *xOffsets, __global float *yOffsets, 
__global float4 *results  )   // input: sRGBA image object

{

     int tidX = get_global_id(0), tidY = get_global_id(1);

     int offset = tidY*get_image_width(input) + tidX;

     int2 coords = (int2)( xOffsets[offset], yOffsets[offset]);

     results[offset] = read_imagef( input, imageSampler, coords  );

}

cl_image_format  imageFormat;

imageFormat.image_channel_data_type  = CL_UNORM_INT8;

imageFormat.image_channel_order = CL_sRGBA

cl_mem imageObj = clCreateImage(

context,                          // A valid OpenCL context

CL_MEM_READ_ONY | CL_MEM_COPY_HOST_PTR,  

&imageFormat,

&desc, //cl_image_desc

pSrcImage,                    // An pointer to the image data 

&retErr);                       // Returned error code
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OpenCL 2.0 does not include writing sRGB images directly, but provides the 
cl_khr_srgb_image_writes extension. The AMD implementations do not 
support this extension as of this writing.

In order to write sRGB pixels in a kernel, explicit conversion from linear RGB to 
sRGB must be implemented in the kernel.

clFillImage is an exception for writing sRGB image directly. The AMD 
OpenCL platform supports clFillImage for filling linear RGB image to sRGB 
image directly. 

6.8.3 Depth images

As with other image formats, clCreateImage is used for creating depth image 
objects. However, the channel order must be set to CL_DEPTH, as illustrated 
below. For the data type of depth image, OpenCL 2.0 supports only CL_FLOAT 
and CL_UNORM_INT16. 

cl_image_format  imageFormat;

imageFormat.image_channel_data_type  = CL_UNORM_INT16;

imageFormat.image_channel_order = CL_DEPTH

cl_mem imageObj = clCreateImage(

                           context,                          // A 
valid OpenCL context

CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,  

&imageFormat,

&desc, //cl_image_desc

pSrcImage, // A pointer to the image data 

&retErr); // Returned error code

In OpenCL 2.0, depth images must be of type image2d or image2d array. 
clCreateImage will fail for other dimensions when creating depth image.

A depth image object can be read by using the read_imagef call in the kernel. 
For write, write_imagef must be used. read_image(i|ui) and 
write_image(i|ui) are not supported for depth images. 

OpenCL 2.0 C introduces two data types, image2d_depth_t and 
image2d_array_depth_t for declaring depth images. The following kernel 
code sample illustrates how to read depth image objects.

// Read depth image object (input) based on sampler and offset and 
save it (results)

__kernel void sample_kernel( read_only image2d_depth_t input, 
sampler_t imageSampler, __global float *xOffsets, __global float 

*yOffsets, __global float *results  )
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{

   int tidX = get_global_id(0), tidY = get_global_id(1);

   int offset = tidY*get_image_width(input) + tidX;

   int2 coords = (int2)( xOffsets[offset], yOffsets[offset]);

   results[offset] = read_imagef( input, imageSampler, coords  );

}

The AMD OpenCL 2.0 platform fully supports the cl_khr_depth_images 
extension but not the cl_khr_gl_depth_images extension. Consequently, the 
AMD OpenCL platform does not support creating a CL depth image from a GL 
depth or depth-stencil texture.

6.9 Non-uniform work group size

6.9.1 Overview

Prior to OpenCL 2.0, each work-group size needed to divide evenly into the 
corresponding global size. This requirement is relaxed in OpenCL 2.0; the last 
work-group in each dimension is allowed to be smaller than all of the other work-
groups in the "uniform" part of the NDRange.  This can reduce the effort required 
to map problems onto NDRanges.

A consequence is that kernels may no longer assume that calls to 
get_work_group_size return the same value in all work-groups.  However, a 
new call (get_enqueued_local_size) has been added to obtain the size in 
the uniform part, which is specified using the local_work_size argument to 
the clEnqueueNDRangeKernel.

A new compile time option (-cl-uniform-work-group-size) has been 
added to optimize the computation for cases in which the work-group size is 
known to, or required to, divide evenly into the global size.

6.10 Portability considerations

6.10.1 Migrating from OpenCL 1.2 to OpenCL 2.0

OpenCL 2.0 is backward compatible with OpenCL 1.2. Applications written on 
OpenCL 1.2 should run on OpenCL 2.0 without requiring any changes to the 
application. 

OpenCL 2.0 includes changes in the runtime and the compiler. In the runtime, 
some new functions (such as for SVM) have been added. In the compiler, the -
cl-std=CL2.0 option is needed in order to compile OpenCL 2.0 kernels.

If a program uses the OpenCL 2.0 functions and if one compiles a kernel by 
using the cl-std=CL2.0 option, the program will not build or compile on 
OpenCL 1.2 platforms. If a program uses only OpenCL 1.2 functions and if one 
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compiles a kernel without the cl-std=CL2.0 option, then the program should 
run on OpenCL 2.0 platforms. 

6.10.2 Identifying implementation specifics

Applications can query for the OpenCL extensions and use the values returned 
from the OpenCL functions.

For instance, clGetSupportedImageFormats will return all image formats 
supported by OpenCL. The supported images may differ across implementations. 
Similarly, clGetDeviceInfo with the CL_DEVICE_EXTENSIONS parameter 
returns all the supported extensions. The supported extensions may differ across 
implementations and between different versions of OpenCL. 
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Appendix A
OpenCL Optional 
Extensions

The OpenCL extensions are associated with the devices and can be queried for 
a specific device. Extensions can be queried for platforms also, but that means 
that all devices in the platform support those extensions.

Table A.1, on page A-14, lists the supported extensions.

A.1 Extension Name Convention

The name of extension is standardized and must contain the following elements 
without spaces in the name (in lower case):

 cl_khr_<extension_name> - for extensions approved by Khronos Group. 
For example: cl_khr_fp64.

 cl_ext_<extension_name> - for extensions provided collectively by multiple 
vendors. For example: cl_ext_device_fission.

 cl_<vendor_name>_<extension_name> – for extension provided by a 
specific vendor. For example: cl_amd_media_ops.

The OpenCL Specification states that all API functions of the extension must 
have names in the form of cl<FunctionName>KHR, cl<FunctionName>EXT, or 
cl<FunctionName><VendorName>. All enumerated values must be in the form of 
CL_<enum_name>_KHR, CL_<enum_name>_EXT, or 
CL_<enum_name>_<VendorName>.

A.2 Querying Extensions for a Platform

To query supported extensions for the OpenCL platform, use the 
clGetPlatformInfo() function, with the param_name parameter set to the 
enumerated value CL_PLATFORM_EXTENSIONS. This returns the extensions as a 
character string with extension names separated by spaces. To find out if a 
specific extension is supported by this platform, search the returned string for the 
required substring.
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A.3 Querying Extensions for a Device

To get the list of devices to be queried for supported extensions, use one of the 
following:

 Query for available platforms using clGetPlatformIDs(). Select one, and 
query for a list of available devices with clGetDeviceIDs().

 For a specific device type, call clCreateContextFromType(), and query a 
list of devices by calling clGetContextInfo() with the param_name 
parameter set to the enumerated value CL_CONTEXT_DEVICES.

After the device list is retrieved, the extensions supported by each device can be 
queried with function call clGetDeviceInfo() with parameter param_name being 
set to enumerated value CL_DEVICE_EXTENSIONS.

The extensions are returned in a char string, with extension names separated by 
a space. To see if an extension is present, search the string for a specified 
substring.

A.4 Using Extensions in Kernel Programs

There are special directives for the OpenCL compiler to enable or disable 
available extensions supported by the OpenCL implementation, and, specifically, 
by the OpenCL compiler. The directive is defined as follows.

#pragma OPENCL EXTENSION <extention_name> : <behavior>
#pragma OPENCL EXTENSION all: <behavior> 

The <extension_name> is described in Section A.1, “Extension Name 
Convention.”. The second form allows to address all extensions at once.

The <behavior> token can be either:

 enable - the extension is enabled if it is supported, or the error is reported 
if the specified extension is not supported or token “all” is used.

 disable - the OpenCL implementation/compiler behaves as if the specified 
extension does not exist. 

 all - only core functionality of OpenCL is used and supported, all extensions 
are ignored. If the specified extension is not supported then a warning is 
issued by the compiler.

The order of directives in #pragma OPENCL EXTENSION is important: a later 
directive with the same extension name overrides any previous one.

The initial state of the compiler is set to ignore all extensions as if it was explicitly 
set with the following directive:

#pragma OPENCL EXTENSION all : disable
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This means that the extensions must be explicitly enabled to be used in kernel 
programs.

Each extension that affects kernel code compilation must add a defined macro 
with the name of the extension. This allows the kernel code to be compiled 
differently, depending on whether the extension is supported and enabled, or not. 
For example, for extension cl_khr_fp64 there should be a #define directive for 
macro cl_khr_fp64, so that the following code can be preprocessed:

#ifdef cl_khr_fp64
// some code

#else
// some code

#endif

A.5 Getting Extension Function Pointers

Use the following function to get an extension function pointer.

void* clGetExtensionFunctionAddress(const char* FunctionName).

This returns the address of the extension function specified by the FunctionName 
string. The returned value must be appropriately cast to a function pointer type, 
specified in the extension spec and header file.

A return value of NULL means that the specified function does not exist in the 
CL implementation. A non-NULL return value does not guarantee that the 
extension function actually exists – queries described in sec. 2 or 3 must be done 
to ensure the extension is supported.

The clGetExtensionFunctionAddress() function cannot be used to get core 
API function addresses.

A.6 List of Supported Extensions that are Khronos-Approved

For a complete list of the supported extensions, see the OpenCL 1.2 and 
OpenCL 2.0 specification documents. The typical extensions in OpenCL 1.2 are:

 cl_khr_global_int32_base_atomics – basic atomic operations on 32-bit 
integers in global memory.

 cl_khr_global_int32_extended_atomics – extended atomic operations on 
32-bit integers in global memory.

 cl_khr_local_int32_base_atomics – basic atomic operations on 32-bit 
integers in local memory.

 cl_khr_local_int32_extended_atomics – extended atomic operations on 
32-bit integers in local memory.

 cl_khr_int64_base_atomics – basic atomic operations on 64-bit integers in 
both global and local memory.

 cl_khr_int64_extended_atomics – extended atomic operations on 64-bit 
integers in both global and local memory.
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 cl_khr_3d_image_writes – supports kernel writes to 3D images.

 cl_khr_byte_addressable_store – this eliminates the restriction of not 
allowing writes to a pointer (or array elements) of types less than 32-bit wide 
in kernel program. 

 cl_khr_gl_sharing – allows association of OpenGL context or share group 
with CL context for interoperability.

 cl_khr_icd – the OpenCL Installable Client Driver (ICD) that lets developers 
select from multiple OpenCL runtimes which may be installed on a system. 
This extension is automatically enabled as of SDK v2 for AMD Accelerated 
Parallel Processing.

 cl_khr_d3d10_sharing - allows association of D3D10 context or share 
group with CL context for interoperability.

 cl_dx9_media_sharing

 Cl_khr_fp16

 cl_khr_gl_event

The typical extensions in OpenCL 2.0 are:

 cl_khr_int64_base_atomics

 cl_khr_int64_extended_atomics

 cl_khr_fp16

 cl_khr_gl_sharing

 cl_khr_gl_event

 cl_khr_d3d10_sharing

 cl_dx9_media_sharing

 cl_khr_d3d11_sharing

 cl_khr_gl_depth_images

 cl_khr_gl_msaa_sharing

 cl_khr_initialize_memory

 cl_khr_terminate_context

 cl_khr_spir

 cl_khr_icd

 cl_khr_subgroups

 cl_khr_mipmap_image

 cl_khr_mipmap_image_writes

 cl_khr_egl_image

 cl_khr_egl_event

 cl_khr_device_enqueue_local_arg_types
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A.7 cl_ext Extensions

 cl_ext_device_fission - Support for device fission in OpenCL™. For more 
information about this extension, see:
http://www.khronos.org/registry/cl/extensions/ext/cl_ext_device_fission.txt

 cl_ext_atomic_counters_32 - Support for 32-bit atomic counters. For more 
information about this extension, see:
https://www.khronos.org/registry/cl/extensions/ext/cl_ext_atomic_counters_3
2.txt

A.8 AMD Vendor-Specific Extensions

This section describes the AMD vendor-specific extensions.

A.8.1 cl_amd_fp64

Before using double data types, double-precision floating point operators, and/or 
double-precision floating point routines in OpenCL™ C kernels, include the 
#pragma OPENCL EXTENSION cl_amd_fp64 : enable directive. See Table A.1 
for a list of supported routines.

A.8.2 cl_amd_vec3

This extension adds support for vectors with three elements: float3, short3, 
char3, etc. This data type was added to OpenCL 1.1 as a core feature. For more 
details, see section 6.1.2 in the OpenCL 1.1 or OpenCL 1.2 spec.

A.8.3 cl_amd_device_persistent_memory

This extension adds support for the new buffer and image creation flag 
CL_MEM_USE_PERSISTENT_MEM_AMD. Buffers and images allocated with this flag 
reside in host-visible device memory. This flag is mutually exclusive with the flags 
CL_MEM_ALLOC_HOST_PTR and CL_MEM_USE_HOST_PTR.

A.8.4 cl_amd_device_attribute_query 

This extension provides a means to query AMD-specific device attributes. To 
enable this extension, include the #pragma OPENCL EXTENSION 
cl_amd_device_attribute_query : enable directive. Once the extension is 
enabled, and the clGetDeviceInfo parameter <param_name> is set to 
CL_DEVICE_PROFILING_TIMER_OFFSET_AMD, the offset in nano-seconds between 
an event timestamp and Epoch is returned.

1.8.4.1  cl_device_profiling_timer_offset_amd

This query enables the developer to get the offset between event timestamps in 
nano-seconds. To use it, compile the kernels with the #pragma OPENCL 
EXTENSION cl_amd_device_attribute_query : enable directive. For 

http://www.khronos.org/registry/cl/extensions/ext/cl_ext_device_fission.txt
http://www.khronos.org/registry/cl/extensions/ext/cl_ext_device_fission.txt
http://www.khronos.org/registry/cl/extensions/ext/cl_ext_device_fission.txt
https://www.khronos.org/registry/cl/extensions/ext/cl_ext_atomic_counters_32.txt
https://www.khronos.org/registry/cl/extensions/ext/cl_ext_atomic_counters_32.txt
https://www.khronos.org/registry/cl/extensions/ext/cl_ext_atomic_counters_32.txt
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kernels complied with this pragma, calling clGetDeviceInfo with <param_name> 
set to CL_DEVICE_PROFILING_TIMER_OFFSET_AMD returns the offset in nano-
seconds between event timestamps.

1.8.4.2  cl_amd_device_topology

This query enables the developer to get a description of the topology used to 
connect the device to the host. Currently, this query works only in Linux. Calling 
clGetDeviceInfo with <param_name> set to CL_DEVICE_TOPOLOGY_AMD returns 
the following 32-bytes union of structures.

typedef union
{
    struct { cl_uint type; cl_uint data[5]; } raw;
    struct { cl_uint type; cl_char unused[17]; cl_char bus; cl_char 
device; cl_char function; } pcie; } cl_device_topology_amd;

The type of the structure returned can be queried by reading the first unsigned 
int of the returned data. The developer can use this type to cast the returned 
union into the right structure type. 

Currently, the only supported type in the structure above is PCIe (type value = 
1). The information returned contains the PCI Bus/Device/Function of the device, 
and is similar to the result of the lspci command in Linux. It enables the 
developer to match between the OpenCL device ID and the physical PCI 
connection of the card.

1.8.4.3  cl_amd_device_board_name

This query enables the developer to get the name of the GPU board and model 
of the specific device. Currently, this is only for GPU devices. 

Calling clGetDeviceInfo with <param_name> set to 
CL_DEVICE_BOARD_NAME_AMD returns a 128-character value.

A.8.5 cl_amd_compile_options 

This extension adds the following options, which are not part of the OpenCL 
specification.

 -g — This is an experimental feature that lets you use the GNU project 
debugger, GDB, to debug kernels on x86 CPUs running Linux or 
cygwin/minGW under Windows. For more details, see Chapter 4, “Debugging 
and Profiling OpenCL.” This option does not affect the default optimization of 
the OpenCL code.

 -O0 — Specifies to the compiler not to optimize. This is equivalent to the 
OpenCL standard option -cl-opt-disable.

 -f[no-]bin-source — Does [not] generate OpenCL source in the .source 
section. For more information, see Appendix C, “OpenCL Binary Image 
Format (BIF) v2.0.” By default, the source is NOT generated.
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 -f[no-]bin-llvmir — Does [not] generate LLVM IR in the .llvmir section. 
For more information, see Appendix C, “OpenCL Binary Image Format (BIF) 
v2.0.” By default, LLVM IR IS generated.

 -f[no-]bin-amdil — Does [not] generate AMD IL in the .amdil section. For 
more information, see Appendix C, “OpenCL Binary Image Format (BIF) 
v2.0.” By Default, AMD IL is NOT generated.

 -f[no-]bin-exe — Does [not] generate the executable (ISA) in .text section. 
For more information, see Appendix C, “OpenCL Binary Image Format (BIF) 
v2.0.” By default, the executable IS generated.

 -f[no-]bin-hsail Does [not] generate HSAIL/BRIG in the binary. By 
default, HSA IL/BRIG is NOT generated.

To avoid source changes,  there are two environment variables that can be used 
to change CL options during the runtime.

 AMD_OCL_BUILD_OPTIONS — Overrides the CL options specified in 
clBuildProgram().

 AMD_OCL_BUILD_OPTIONS_APPEND — Appends options to the options 
specified in clBuildProgram().

A.8.6 cl_amd_offline_devices

To generate binary images offline, it is necessary to access the compiler for every 
device that the runtime supports, even if the device is currently not installed on 
the system. When, during context creation, CL_CONTEXT_OFFLINE_DEVICES_AMD 
is passed in the context properties, all supported devices, whether online or 
offline, are reported and can be used to create OpenCL binary images.

A.8.7 cl_amd_event_callback 

This extension provides the ability to register event callbacks for states other than 
cl_complete. The full set of event states are allowed: cl_queued, 
cl_submitted, and cl_running. This extension is enabled automatically and 
does not need to be explicitly enabled through #pragma when using the SDK v2 
of AMD Accelerated Parallel Processing. 

A.8.8 cl_amd_popcnt

This extension introduces a “population count” function called popcnt. This 
extension was taken into core OpenCL 1.2, and the function was renamed 
popcount. The core 1.2 popcount function (documented in section 6.12.3 of the 
OpenCL Specification) is identical to the AMD extension popcnt function.

A.8.9 cl_amd_media_ops 

This extension adds the following built-in functions to the OpenCL language. 
Note: For OpenCL scalar types, n = 1; for vector types, it is {2, 4, 8, or 16}. 
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Note:in the following, n denotes the size, which can be 1, 2, 4, 8, or 16;
[i] denotes the indexed element of a vector, designated 0 to n-1.

Built-in function: amd_pack

uint amd_pack(float4 src)

Return value

((((uint)src[0]) & 0xFF) << 0) +
((((uint)src[1]) & 0xFF) <<  8) +
((((uint)src[2]) & 0xFF) << 16) +
((((uint)src[3]) & 0xFF) << 24)

Built-in function: amd_unpack0

floatn   amd_unpack0 (uintn src)

Return value for each vector component

(float)(src[i] & 0xFF)

Built-in function: amd_unpack1

floatn   amd_unpack1 (uintn src)

Return value for each vector component

(float)((src[i] >> 8) & 0xFF)

Built-in function: amd_unpack2

floatn   amd_unpack2 (uintn src)

Return value for each vector component

(float)((src[i] >> 16) & 0xFF)

Built-in function: amd_unpack3

floatn  amd_unpack3(uintn src)

Return value for each vector component

(float)((src[i] >> 24) & 0xFF)

Built-in function: amd_bitalign 

uintn  amd_bitalign (uintn src0, uintn src1, uintn src2)

Return value for each vector component

(uint) (((((long)src0[i]) << 32) | (long)src1[i]) >> (src2[i] & 31))

Built-in function: amd_bytealign 
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uintn  amd_bytealign (uintn src0, uintn src1, uintn src2)

Return value for each vector component

(uint) (((((long)src0[i]) << 32) | (long)src1[i]) >> ((src2[i] & 3)*8))

Built-in function: amd_lerp 

uintn  amd_lerp (uintn src0, uintn src1, uintn src2)

Return value for each vector component

(((((src0[i] >>  0) & 0xFF) + ((src1[i] >>  0) & 0xFF) + ((src2[i] >>  0) & 1)) >> 1) <<  0) +
(((((src0[i] >> 8) & 0xFF) + ((src1[i] >> 8) & 0xFF) + ((src2[i] >>  8) & 1)) >> 1) <<  8) +
(((((src0[i] >> 16) & 0xFF) + ((src1[i] >> 16) & 0xFF) + ((src2[i] >> 16) & 1)) >> 1) << 16) +
(((((src0[i] >> 24) & 0xFF) + ((src1[i] >> 24) & 0xFF) + ((src2[i] >> 24) & 1)) >> 1) << 24) ;

Built-in function: amd_sad 

uintn  amd_sad (uintn src0, uintn src1, uintn src2)

Return value for each vector component

src2[i] + 
abs(((src0[i] >>  0) & 0xFF) - ((src1[i] >>  0) & 0xFF)) +
abs(((src0[i] >>  8) & 0xFF) - ((src1[i] >>  8) & 0xFF)) +
abs(((src0[i] >> 16) & 0xFF) - ((src1[i] >> 16) & 0xFF)) +
abs(((src0[i] >> 24) & 0xFF) - ((src1[i] >> 24) & 0xFF));

Built-in function: amd_sad4 

uint amd_sad4 (uint4 a, uint4 b, uint c)

Return value for each vector component

src2[i] + 
abs(((src0[i] >>  0) & 0xFF) - ((src1[i] >>  0) & 0xFF)) +
abs(((src0[i] >>  8) & 0xFF) - ((src1[i] >>  8) & 0xFF)) +
abs(((src0[i] >> 16) & 0xFF) - ((src1[i] >> 16) & 0xFF)) +
abs(((src0[i] >> 24) & 0xFF) - ((src1[i] >> 24) & 0xFF));

Built-in function: amd_sadhi 

uintn  amd_sadhi (uintn src0, uintn src1, uintn src2)

Return value for each vector component

src2[i] + 
(abs(((src0[i] >>  0) & 0xFF) - ((src1[i] >>  0) & 0xFF)) << 16) +
(abs(((src0[i] >>  8) & 0xFF) - ((src1[i] >>  8) & 0xFF)) << 16) +
(abs(((src0[i] >> 16) & 0xFF) - ((src1[i] >> 16) & 0xFF)) << 16) +
(abs(((src0[i] >> 24) & 0xFF) - ((src1[i] >> 24) & 0xFF)) << 16);

For more information, see: 
http://www.khronos.org/registry/cl/extensions/amd/cl_amd_media_ops.txt.

http://www.khronos.org/registry/cl/extensions/amd/cl_amd_media_ops.txt
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A.8.10 cl_amd_printf

The OpenCL Specification 1.1 and 1.2 support the optional AMD extension 
cl_amd_printf, which provides printf capabilities to OpenCL C programs. To use 
this extension, an application first must include
#pragma OPENCL EXTENSION cl_amd_printf : enable. 

Built-in function: 
printf(__constant char * restrict format, …); 

This function writes output to the stdout stream associated with the 
host application. The format string is a character sequence that:

– is null-terminated and composed of zero and more directives,

– ordinary characters (i.e. not %), which are copied directly to the output 
stream unchanged, and 

– conversion specifications, each of which can result in fetching zero or 
more arguments, converting them, and then writing the final result to the 
output stream. 

The format string must be resolvable at compile time; thus, it cannot 
be dynamically created by the executing program. (Note that the use of 

variadic arguments in the built-in printf does not imply its use in other built-

ins; more importantly, it is not valid to use printf in user-defined functions 

or kernels.)

The OpenCL C printf closely matches the definition found as part of the 
C99 standard. Note that conversions introduced in the format string with 
% are supported with the following guidelines: 

 A 32-bit floating point argument is not converted to a 64-bit double, 
unless the extension cl_khr_fp64 is supported and enabled, as 
defined in section 9.3 of the OpenCL Specification 1.1. This includes 
the double variants if cl_khr_fp64 is supported and defined in the 
corresponding compilation unit.

 64-bit integer types can be printed using %ld / %lx / %lu . 

 %lld / %llx / %llu are not supported and reserved for 128-bit integer 
types (long long).

 All OpenCL vector types (section 6.1.2 of the OpenCL Specification 
1.1) can be explicitly passed and printed using the modifier vn, where 
n can be 2, 3, 4, 8, or 16. This modifier appears before the original 
conversion specifier for the vector’s component type (for example, to 
print a float4 %v4f). Since vn is a conversion specifier, it is valid to 
apply optional flags, such as field width and precision, just as it 
is when printing the component types. Since a vector is an aggregate 
type, the comma separator is used between the components:
0:1, … , n-2:n-1. 
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A.8.11 cl_amd_predefined_macros 

The following macros are predefined when compiling OpenCL™ C kernels. 
These macros are defined automatically based on the device for which the code 
is being compiled.

GPU devices:

__Barts__
__BeaverCreek__
__Bheem__
__Bonaire__
__Caicos__
__Capeverde__
__Carrizo__
__Cayman__
__Cedar__
__Cypress__
__Devastator__
__Hainan__
____
__Iceland__
__Juniper__
__Kalindi__
__Kauai__
__Lombok__
__Loveland__
__Mullins__
__Oland__
__Pitcairn__
__RV710__
__RV730__
__RV740__
__RV770__
__RV790__
__Redwood__
__Scrapper__
__Spectre__
__Spooky__
__Tahiti__
__Tonga__
__Turks__
__WinterPark__
__GPU__

CPU devices:

__CPU__
__X86__
__X86_64__

Note that __GPU__ or __CPU__ are predefined whenever a GPU or CPU device 
is the compilation target.

An example kernel is provided below.

#pragma OPENCL EXTENSION cl_amd_printf : enable
const char* getDeviceName() {
#ifdef __Cayman__
        return "Cayman";
#elif __Barts__
        return "Barts";
#elif __Cypress__
        return "Cypress";
#elif defined(__Juniper__)



A M D  A C C E L E R A T E D P A R A L L E L  P R O C E S S I N G

A-12 Appendix A: OpenCL Optional Extensions
Copyright © 2014 Advanced Micro Devices, Inc. All rights reserved.   

        return "Juniper";
#elif defined(__Redwood__)
        return "Redwood";
#elif defined(__Cedar__)
        return "Cedar";
#elif defined(__ATI_RV770__)
        return "RV770";
#elif defined(__ATI_RV730__)
        return "RV730";
#elif defined(__ATI_RV710__)
        return "RV710";
#elif defined(__Loveland__)
        return "Loveland";
#elif defined(__GPU__)
        return "GenericGPU";
#elif defined(__X86__)
        return "X86CPU";
#elif defined(__X86_64__)
        return "X86-64CPU";
#elif defined(__CPU__)
        return "GenericCPU";
#else
        return "UnknownDevice";
#endif
}
kernel void test_pf(global int* a)
{
        printf("Device Name: %s\n", getDeviceName());
}

A.8.12 cl_amd_bus_addressable_memory

This extension defines an API for peer-to-peer transfers between AMD GPUs 
and other PCIe device, such as third-party SDI I/O devices. Peer-to-peer 
transfers have extremely low latencies by not having to use the host’s main 
memory or the CPU (see Figure A.1). This extension allows sharing a memory 
allocated by the graphics driver to be used by other devices on the PCIe bus 
(peer-to-peer transfers) by exposing a write-only bus address. It also allows 
memory allocated on other PCIe devices (non-AMD GPU) to be directly 
accessed by AMD GPUs. One possible use of this is for a video capture device 
to directly write into the GPU memory using its DMA.This extension is supported 
only on AMD FirePro™ professional graphics cards.
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Figure A.1 Peer-to-Peer Transfers Using the 
cl_amd_bus_addressable_memory Extension
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A.9 Supported Functions for cl_amd_fp64 / cl_khr_fp64

AMD OpenCL is now cl_khr_fp64-compliant on devices compliant with OpenCL 
1.1 and greater. Thus, cl_amd_fp64 is now a synonym for cl_khr_fp64 on all 
supported devices.

A.10 Extension Support by Device

Table A.1 and Table A.2 list the extension support for selected devices.

Table A.1 Extension Support for AMD GPU Devices 1

Note that an atomic counter is a device-level counter that can be added / 
decremented by different work-items, where the atomicity of the operation is 

A M D APUs A M D Radeon H D

Extension Brazos Llano Trinity

Tahiti1, 
Pitcairn2, 

Cape Verde3

1. AMD Radeon HD 79XX series.
2. AMD Radeon HD 78XX series.
3. AMD Radeon HD 77XX series.

Turks4

4. AMD Radeon HD 75XX series and AMD Radeon HD 76XX series.

Cayman5

5. AMD Radeon HD 69XX series.

Barts6

6. AMD Radeon HD 68XX series.

Cypress7 

7. ATI Radeon HD 59XX series and 58XX series, AMD FirePro V88XX series and V87XX series.

cl_khr_*_atomics (32-bit) Yes Yes Yes Yes Yes Yes Yes Yes

cl_ext_atomic_counters_32 Yes Yes Yes Yes Yes Yes Yes Yes

cl_khr_gl_sharing Yes Yes Yes Yes Yes Yes Yes Yes

cl_khr_byte_addressable_store Yes Yes Yes Yes Yes Yes Yes Yes

cl_ext_device_fission CPU 
only

CPU 
only

CPU 
only

No No No No No

cl_amd_device_attribute_query Yes Yes Yes Yes Yes Yes Yes Yes

cl_khr_fp64 CPU 
only

CPU 
only

CPU 
only

Yes Yes Yes No Yes

cl_amd_fp64 CPU 
only

CPU 
only

CPU 
only

Yes Yes Yes No Yes

cl_amd_vec3 Yes Yes Yes Yes Yes Yes Yes Yes

Images Yes Yes Yes Yes Yes Yes Yes Yes

cl_khr_d3d10_sharing Yes Yes Yes Yes Yes Yes Yes Yes

cl_amd_media_ops Yes Yes Yes Yes Yes Yes Yes Yes

cl_amd_printf Yes Yes Yes Yes Yes Yes Yes Yes

cl_amd_popcnt Yes Yes Yes Yes Yes Yes Yes Yes

cl_khr_3d_image_writes Yes Yes Yes Yes Yes Yes Yes Yes

Platform Extensions

cl_khr_icd Yes Yes Yes Yes Yes Yes Yes Yes

cl_amd_event_callback Yes Yes Yes Yes Yes Yes Yes Yes

cl_amd_offline_devices Yes Yes Yes Yes Yes Yes Yes Yes
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guaranteed. The access to the counter is done only through add/dec built-in 
functions; thus, no two work-items have the same value returned in the case that 
a given kernel only increments or decrements the counter. (Also see 
http://www.khronos.org/registry/cl/extensions/ext/cl_ext_atomic_counters_32.txt.)

Table A.2 Extension Support for Older AMD GPUs and CPUs

x86 CPU
with SSE2 or laterExtension Juniper1 

1. ATI Radeon HD 5700 series, AMD Mobility Radeon HD 5800 series, AMD FirePro V5800 series, AMD 
Mobility FirePro M7820.

Redwood2 

2. ATI Radeon™ HD 5600 Series, ATI Radeon™ HD 5600 Series, ATI Radeon™ HD 5500 Series, AMD 
Mobility Radeon™ HD 5700 Series, AMD Mobility Radeon™ HD 5600 Series, AMD FirePro™ V4800 
Series, AMD FirePro™ V3800 Series, AMD Mobility FirePro™ M5800

Cedar3

3. ATI Radeon™ HD 5400 Series, AMD Mobility Radeon™ HD 5400 Series

cl_khr_*_atomics Yes Yes Yes Yes

cl_ext_atomic_counters_32 Yes Yes Yes No

cl_khr_gl_sharing Yes Yes Yes Yes

cl_khr_byte_addressable_store Yes Yes Yes Yes

cl_ext_device_fission No No No Yes

cl_amd_device_attribute_query Yes Yes Yes Yes

cl_khr_fp64 No No No Yes

cl_amd_fp644

4. Available on all devices that have double-precision, including all Southern Island devices.

No No No Yes

cl_amd_vec3 Yes Yes Yes Yes

Images Yes Yes Yes Yes5

5. Environment variable CPU_IMAGE_SUPPORT must be set.

cl_khr_d3d10_sharing Yes Yes Yes Yes

cl_amd_media_ops Yes Yes Yes Yes

cl_amd_media_ops2 Yes Yes Yes Yes

cl_amd_printf Yes Yes Yes Yes

cl_amd_popcnt Yes Yes Yes Yes

cl_khr_3d_image_writes Yes Yes Yes No

Platform Extensions

cl_khr_icd Yes Yes Yes Yes

cl_amd_event_callback Yes Yes Yes Yes

cl_amd_offline_devices Yes Yes Yes Yes
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Appendix B 
The OpenCL Installable Client Driver 
(ICD)

The OpenCL Installable Client Driver (ICD) is part of the AMD Accelerated 
Parallel Processing software stack. Code written prior to SDK v2.0 must be 
changed to comply with OpenCL ICD requirements.

B.1 Overview

The ICD allows multiple OpenCL implementations to co-exist; also, it allows 
applications to select between these implementations at runtime. 

Use the clGetPlatformIDs() and clGetPlatformInfo() functions to see the 
list of available OpenCL implementations, and select the one that is best for your 
requirements. It is recommended that developers offer their users a choice on 
first run of the program or whenever the list of available platforms changes.

A properly implemented ICD and OpenCL library is transparent to the end-user.

B.2 Using ICD

Sample code that is part of the SDK contains examples showing how to query 
the platform API and call the functions that require a valid platform parameter.

This is a pre-ICD code snippet.

context = clCreateContextFromType(
            0, 
            dType, 
            NULL, 
            NULL, 
            &status);

The ICD-compliant version of this code follows.

/*
     * Have a look at the available platforms and pick either
     * the AMD one if available or a reasonable default.
     */

    cl_uint numPlatforms;
    cl_platform_id platform = NULL;
    status = clGetPlatformIDs(0, NULL, &numPlatforms);
    if(!sampleCommon->checkVal(status,
                               CL_SUCCESS,
                               "clGetPlatformIDs failed."))
    {
        return SDK_FAILURE;
    }
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    if (0 < numPlatforms) 
    {
        cl_platform_id* platforms = new cl_platform_id[numPlatforms];
        status = clGetPlatformIDs(numPlatforms, platforms, NULL);
        if(!sampleCommon->checkVal(status,
                                   CL_SUCCESS,
                                   "clGetPlatformIDs failed."))
        {
            return SDK_FAILURE;
        }
        for (unsigned i = 0; i < numPlatforms; ++i) 
        {
            char pbuf[100];
            status = clGetPlatformInfo(platforms[i],
                                       CL_PLATFORM_VENDOR,
                                       sizeof(pbuf),
                                       pbuf,
                                       NULL);

            if(!sampleCommon->checkVal(status,
                                       CL_SUCCESS,
                                       "clGetPlatformInfo failed."))
            {
                return SDK_FAILURE;
            }

            platform = platforms[i];
            if (!strcmp(pbuf, "Advanced Micro Devices, Inc.")) 
            {
                break;
            }
        }
        delete[] platforms;
    }

    /*
     * If we could find our platform, use it. Otherwise pass a NULL and 
get whatever the
     * implementation thinks we should be using.
     */

    cl_context_properties cps[3] = 
    {
        CL_CONTEXT_PLATFORM, 
        (cl_context_properties)platform, 
        0
    };
    /* Use NULL for backward compatibility */
    cl_context_properties* cprops = (NULL == platform) ? NULL : cps;

    context = clCreateContextFromType(
                  cprops,
                  dType,
                  NULL,
                  NULL,
                  &status);

Another example of a pre-ICD code snippet follows.

status = clGetDeviceIDs(NULL, CL_DEVICE_TYPE_DEFAULT, 0, NULL,
&numDevices);

The ICD-compliant version of the code snippet is:
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status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_DEFAULT, 0, NULL,
&numDevices);

NOTE: It is recommended that the host code look at the platform vendor string 
when searching for the desired OpenCL platform, instead of using the platform 
name string. The platform name string might change, whereas the platform 
vendor string remains constant for a particular vendor’s implementation.
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Appendix C 
OpenCL Binary Image Format (BIF) 
v2.0

C.1 Overview

OpenCL Binary Image Format (BIF) 2.0 is in the ELF format. BIF2.0 allows the 
OpenCL binary to contain the OpenCL source program, the LLVM IR, and the 
executable. The BIF defines the following special sections:

 .source: for storing the OpenCL source program. 

 .llvmir: for storing the OpenCL immediate representation (LLVM IR).

 .comment: for storing the OpenCL version and the driver version that created 
the binary.

The BIF can have other special sections for debugging, etc. It also contains 
several ELF special sections, such as:

 .text for storing the executable.

 .rodata for storing the OpenCL runtime control data.

 other ELF special sections required for forming an ELF (for example: 
.strtab, .symtab, .shstrtab). 

By default, OpenCL generates a binary that has LLVM IR, and the executable for 
the GPU (,.llvmir, .amdil, and .text sections), as well as LLVM IR and the 
executable for the CPU (.llvmir and .text sections). The BIF binary always 
contains a .comment section, which is a readable C string. The default behavior 
can be changed with the BIF options described in Section C.2, “BIF Options,” 
page C-3. 

The LLVM IR enables recompilation from LLVM IR to the target. When a binary 
is used to run on a device for which the original program was not generated and 
the original device is feature-compatible with the current device, OpenCL 
recompiles the LLVM IR to generate a new code for the device. Note that the 
LLVM IR is only universal within devices that are feature-compatible in the same 
device type, not across different device types. This means that the LLVM IR for 
the CPU is not compatible with the LLVM IR for the GPU. The LLVM IR for a 
GPU works only for GPU devices that have equivalent feature sets.

BIF2.0 is supported since Stream SDK 2.2.
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C.1.1 Executable and Linkable Format (ELF) Header

For the ELF binary to be considered valid, the AMD OpenCL runtime expects 
certain values to be specified. The following header fields must be set for all 
binaries that are created outside of the OpenCL framework.

Table C.1 ELF Header Fields 

The fields not shown in Table C.1 are given values according to the ELF 
Specification. The e_machine value is defined as one of the oclElfTargets 
enumerants; the values for these are:

Field Value Description

e_ident[EI_CLASS] ELFCLASS32, 
ELFCLASS64

BIF can be either 32-bit ELF or 
64bit ELF.

e_ident[EI_DATA] ELFDATA2LSB BIF is stored in little Endian order.

e_ident[EI_OSABI] ELFOSABI_NONE Not used.

e_ident[EI_ABIVERSION] 0 Not used.

e_type ET_NONE Not used.

e_machine oclElfTargets Enum CPU/GPU machine ID.

E_version EV_CURRENT Must be EV_CURRENT.

e_entry 0 Not used.

E_phoff 0 Not used.

e_flags 0 Not used.

E_phentsize 0 Not used.

E_phnum 0 Not used.
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C.1.2 Bitness 

The BIF can be either 32-bit ELF format or a 64-bit ELF format. For the GPU, 
OpenCL generates a 32-bit BIF binary; it can read either 32-bit BIF or 64-bit BIF 
binary. For the CPU, OpenCL generates and reads only 32-bit BIF binaries if the 
host application is 32-bit (on either 32-bit OS or 64-bit OS). It generates and 
reads only 64-bit BIF binary if the host application is 64-bit (on 64-bit OS).

C.2 BIF Options

OpenCL provides the following options to control what is contained in the binary.

-f[no-]bin-source — [not] generate OpenCL source in .source section.

-f[no-]bin-llvmir — [not] generate LLVM IR in .llvmir section.

-f[no-]bin-exe — [not] generate the executable (ISA) in .text section.

The option syntax follows the GCC option syntax.

By default, OpenCL generates the .llvmir section, .amdil section, and .text 
section. The following are examples for using these options:

Example 1: Generate executable for execution:

e_machine = { 1001 + CaltargetEnum
2002
2003

: GPU
: CPU generic without SSE3
: CPU generic with SSE3

typedef enum CALtargetEnum {
    CAL_TARGET_600 = 0, /**< R600 GPU ISA */
    CAL_TARGET_610 = 1, /**< RV610 GPU ISA */
    CAL_TARGET_630 = 2, /**< RV630 GPU ISA */
    CAL_TARGET_670 = 3, /**< RV670 GPU ISA */
    CAL_TARGET_7XX = 4, /**< R700 class GPU ISA */
    CAL_TARGET_770 = 5, /**< RV770 GPU ISA */
    CAL_TARGET_710 = 6, /**< RV710 GPU ISA */
    CAL_TARGET_730 = 7, /**< RV730 GPU ISA */
    CAL_TARGET_CYPRESS = 8, /**< CYPRESS GPU ISA */
    CAL_TARGET_JUNIPER = 9, /**< JUNIPER GPU ISA */
    CAL_TARGET_REDWOOD = 10, /**< REDWOOD GPU ISA */
    CAL_TARGET_CEDAR= 11, /**< CEDAR GPU ISA */
    CAL_TARGET_SUMO = 12, /**< SUMO GPU ISA */
    CAL_TARGET_SUPERSUMO =13, /**< SUPERSUMO GPU ISA */
    CAL_TARGET_WRESTLER = 14, /**< WRESTLER GPU ISA */
    CAL_TARGET_CAYMAN =15, /**< CAYMAN GPU ISA */
    CAL_TARGET_KAUAI = 16, /**< KAUAI GPU ISA */
    CAL_TARGET_BARTS = 17 , /**< BARTS GPU ISA */
    CAL_TARGET_TURKS = 18 , /**< TURKS GPU ISA */
    CAL_TARGET_CAICOS  = 19, /**< CAICOS GPU ISA */
    CAL_TARGET_TAHITI = 20,/**< TAHITI GPU ISA*/
    CAL_TARGET_PITCAIRN = 21,/**< PITCAIRN GPU ISA*/
    CAL_TARGET_CAPEVERDE = 22,/**< CAPE VERDE GPU ISA*/
    CAL_TARGET_DEVASTATOR = 23,/**< DEVASTATOR GPU ISA*/
    CAL_TARGET_SCRAPPER = 24, /**< SCRAPPER GPU ISA*/
    CAL_TARGET_OLAND = 25, /**< OLAND GPU ISA*/
    CAL_TARGET_BONAIRE = 26, /**< BONAIRE GPU ISA*/
    CAL_TARGET_KALINDI = 29, /**< KALINDI GPU ISA*/
};
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clBuildProgram(program, 0, NULL, "-fno-bin-llvmir -fno-bin-amdil", NULL, 
NULL);

Example 2: Generate only LLVM IR:

clBuildProgram(program, 0, NULL, "-fno-bin-exe -fno-bin-amdil", NULL, 
NULL);

This binary can recompile for all the other devices of the same device type.
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Appendix D 
Hardware overview of pre-GCN 
devices

This chapter provides a hardware overview of pre-GCN devices. Pre-GCN 
devices include the Evergreen and Northern Islands families that are based on 
VLIW. 

A general OpenCL device comprises compute units, each of which can have 
multiple processing elements. A work-item (or SPMD kernel instance) executes 
on a single processing element. The processing elements within a compute unit 
can execute in lock-step using SIMD execution. Compute units, however, 
execute independently (see Figure D.1).

AMD GPUs consist of multiple compute units. The number of them and the way 
they are structured varies with the device family, as well as device designations 
within a family. Each of these processing elements possesses ALUs. For devices 
in the Northern Islands and Southern Islands families, these ALUs are arranged 
in four (in the Evergreen family, there are five) processing elements with arrays 
of 16 ALUs. Each of these arrays executes a single instruction across each lane 
for each of a block of 16 work-items. That instruction is repeated over four cycles 
to make the 64-element vector called a wavefront. On Northern Islands and 
Evergreen family devices, the PE arrays execute instructions from one wavefront, 
so that each work-item issues four (for Northern Islands) or five (for Evergreen) 
instructions at once in a very-long-instruction-word (VLIW) packet.
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Figure D.1 shows a simplified block diagram of a generalized AMD GPU compute 
device.

Figure D.1 Generalized AMD GPU Compute Device Structure

Figure D.2 is a simplified diagram of an AMD GPU compute device. Different 
GPU compute devices have different characteristics (such as the number of 
compute units), but follow a similar design pattern. 
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Figure D.2 Simplified Block Diagram of an Evergreen-Family GPU1

GPU compute devices comprise groups of compute units. Each compute unit 
contains numerous processing elements, which are responsible for executing 
kernels, each operating on an independent data stream. Processing elements, in 
turn, contain numerous processing elements, which are the fundamental, 
programmable ALUs that perform integer, single-precision floating-point, double-
precision floating-point, and transcendental operations. All processing elements 
within a compute unit execute the same instruction sequence in lock-step for 
Evergreen and Northern Islands devices; different compute units can execute 
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different instructions. 

A processing element is arranged as a five-way or four-way (depending on the 
GPU type) very long instruction word (VLIW) processor (see bottom of 
Figure D.2). Up to five scalar operations (or four, depending on the GPU type) 
can be co-issued in a VLIW instruction, each of which are executed on one of 
the corresponding five ALUs. ALUs can execute single-precision floating point or 
integer operations. One of the five ALUs also can perform transcendental 
operations (sine, cosine, logarithm, etc.). Double-precision floating point 
operations are processed (where supported) by connecting two or four of the 
ALUs (excluding the transcendental core) to perform a single double-precision 
operation. The processing element also contains one branch execution unit to 
handle branch instructions.

Different GPU compute devices have different numbers of processing elements. 
For example, the ATI Radeon™ HD 5870 GPU has 20 compute units, each with 
16 processing elements, and each processing elements contains five ALUs; this 
yields 1600 physical ALUs.
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Appendix E 
OpenCL-OpenGL Interoperability

This chapter explains how to establish an association between GL context and 
CL context. 

Please note the following guidelines.

1. All devices used to create the OpenCL context associated with 
command_queue must support acquiring shared CL/GL objects. This 
constraint is enforced at context-creation time.

2. clCreateContext and clCreateContextFromType fail context creation if the 
device list passed in cannot interoperate with the GL context. 
clCreateContext only permits GL-friendly device(s). 
clCreateFromContextType can only include GL-friendly device(s).

3. Use clGetGLContextInfoKHR to determine GL-friendly device(s) from the 
following parameters:

a. CL_CURRENT_DEVICE_FOR_GL_CONTEXT_KHR only returns the device that 
can interoperate with the GL context. 

b. CL_DEVICES_FOR_GL_CONTEXT_KHR includes all GL-context interoperable 
devices. 

4. While it is possible to create as many GL contexts on a GPU, do not create 
concurrently two GL contexts for two GPUs from the same process.

5. For OpenGL interoperability with OpenCL, there is a strict order in which the 
OpenCL context is created and the texture/buffer shared allocations can be 
made. To use shared resources, the OpenGL application must create an 
OpenGL context and afterwards an OpenCL context. All resources (GL 
buffers and textures) created after the OpenCL context was created can be 
shared between OpenGL and OpenCL. If resources are allocated before the 
OpenCL context was created, they cannot be shared between OpenGL and 
OpenCL.

E.1 Under Windows

This sections discusses CL-GL interoperability for single and multiple GPU 
systems running under Windows.
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E.1.1 Single GPU Environment

5.1.1.1  Creating CL Context from a GL Context

Use GLUT windowing system or Win32 API for event handling.

Using GLUT

1. Use glutInit to initialize the GLUT library and negotiate a session with the 
windowing system. This function also processes the command line options, 
depending on the windowing system.

2. Use wglGetCurrentContext to get the current rendering GL context 
(HGLRC) of the calling thread.

3. Use wglGetCurrentDC to get the device context (HDC) that is associated 
with the current OpenGL rendering context of the calling thread.

4. Use the clGetGLContextInfoKHR (See Section 9.7 of the OpenCL 
Specification 1.1) function and the 
CL_CURRENT_DEVICE_FOR_GL_CONTEXT_KHR parameter to get the device ID of 
the CL device associated with OpenGL context.

5. Use clCreateContext (See Section 4.3 of the OpenCL Specification 1.1) to 
create the CL context (of type cl_context). 

The following code snippet shows you how to create an interoperability context 
using GLUT on single GPU system.

glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE);
glutInitWindowSize(WINDOW_WIDTH, WINDOW_HEIGHT);
glutCreateWindow("OpenCL SimpleGL");

HGLRC glCtx = wglGetCurrentContext();

Cl_context_properties cpsGL[] = 
{CL_CONTEXT_PLATFORM,(cl_context_properties)platform,
CL_WGL_HDC_KHR, (intptr_t) wglGetCurrentDC(),

CL_GL_CONTEXT_KHR, (intptr_t) glCtx, 0}; 

status = clGetGLContextInfoKHR(cpsGL, 
CL_CURRENT_DEVICE_FOR_GL_CONTEXT_KHR,
sizeof(cl_device_id), 
&interopDevice, 
NULL);

// Create OpenCL context from device's id
context = clCreateContext(cpsGL,
1,
&interopDevice,
0,
0,
&status);

Using Win32 API

1. Use CreateWindow for window creation and get the device handle (HWND). 
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2. Use GetDC to get a handle to the device context for the client area of a 
specific window, or for the entire screen (OR). Use CreateDC function to 
create a device context (HDC) for the specified device.

3. Use ChoosePixelFormat to match an appropriate pixel format supported by 
a device context and to a given pixel format specification.

4. Use SetPixelFormat to set the pixel format of the specified device context 
to the format specified.

5. Use wglCreateContext to create a new OpenGL rendering context from 
device context (HDC). 

6. Use wglMakeCurrent to bind the GL context created in the above step as 
the current rendering context. 

7. Use clGetGLContextInfoKHR function (see Section 9.7 of the OpenCL 
Specification 1.1) and parameter CL_CURRENT_DEVICE_FOR_GL_CONTEXT_KHR 
to get the device ID of the CL device associated with OpenGL context.

8. Use clCreateContext function (see Section 4.3 of the OpenCL Specification 
1.1) to create the CL context (of type cl_context).

The following code snippet shows how to create an interoperability context using 
WIN32 API for windowing. (Users also can refer to the SimpleGL sample in the 
AMD APP SDK samples.)

int  pfmt;
PIXELFORMATDESCRIPTOR  pfd; 
pfd.nSize           = sizeof(PIXELFORMATDESCRIPTOR); 
pfd.nVersion        = 1; 
pfd.dwFlags         = PFD_DRAW_TO_WINDOW | 

PFD_SUPPORT_OPENGL | PFD_DOUBLEBUFFER ;
pfd.iPixelType      = PFD_TYPE_RGBA; 
pfd.cColorBits      = 24; 
pfd.cRedBits        = 8; 
pfd.cRedShift       = 0; 
pfd.cGreenBits      = 8; 
pfd.cGreenShift     = 0; 
pfd.cBlueBits       = 8; 
pfd.cBlueShift      = 0; 
pfd.cAlphaBits      = 8;
pfd.cAlphaShift     = 0; 
pfd.cAccumBits      = 0; 
pfd.cAccumRedBits   = 0; 
pfd.cAccumGreenBits = 0; 
pfd.cAccumBlueBits  = 0; 
pfd.cAccumAlphaBits = 0; 
pfd.cDepthBits      = 24; 
pfd.cStencilBits    = 8; 
pfd.cAuxBuffers     = 0; 
pfd.iLayerType      = PFD_MAIN_PLANE; 
pfd.bReserved       = 0; 
pfd.dwLayerMask     = 0;
pfd.dwVisibleMask   = 0; 
pfd.dwDamageMask    = 0;

ZeroMemory(&pfd, sizeof(PIXELFORMATDESCRIPTOR));

WNDCLASS windowclass;

windowclass.style = CS_OWNDC;
windowclass.lpfnWndProc = WndProc;
windowclass.cbClsExtra = 0;
windowclass.cbWndExtra = 0;
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windowclass.hInstance = NULL;
windowclass.hIcon = LoadIcon(NULL, IDI_APPLICATION);
windowclass.hCursor = LoadCursor(NULL, IDC_ARROW);
windowclass.hbrBackground = (HBRUSH)GetStockObject(BLACK_BRUSH);
windowclass.lpszMenuName = NULL;
windowclass.lpszClassName = reinterpret_cast<LPCSTR>("SimpleGL");
         RegisterClass(&windowclass);

gHwnd = CreateWindow(reinterpret_cast<LPCSTR>("SimpleGL"), 
reinterpret_cast<LPCSTR>("SimpleGL"), 
WS_CAPTION | WS_POPUPWINDOW | WS_VISIBLE, 
0, 
0, 
screenWidth, 
screenHeight, 
NULL, 
NULL, 
windowclass.hInstance, 
NULL);

hDC = GetDC(gHwnd);

pfmt = ChoosePixelFormat(hDC, &pfd);
        
ret = SetPixelFormat(hDC, pfmt, &pfd);

hRC = wglCreateContext(hDC);

ret = wglMakeCurrent(hDC, hRC);

cl_context_properties properties[] = 
{

CL_CONTEXT_PLATFORM, 
(cl_context_properties) platform,
CL_GL_CONTEXT_KHR,   (cl_context_properties) hRC,
CL_WGL_HDC_KHR,      (cl_context_properties) hDC,
0

};

status = clGetGLContextInfoKHR(properties, 
CL_CURRENT_DEVICE_FOR_GL_CONTEXT_KHR,
sizeof(cl_device_id), 
&interopDevice, 
NULL);

// Create OpenCL context from device's id
context = clCreateContext(properties,

1,
&interopDevice,
0,
0,
&status);

E.1.2 Multi-GPU Environment

5.1.2.1  Creating CL context from a GL context

Do not to use the GLUT windowing system in multi-GPU environment because 
it always creates a GL context on the primary display, and it is not possible to 
specify which display device to select for a GL context.

To use Win32 API for windowing in multi-GPU environment:

1. Detect each display by using EnumDisplayDevices function. This function 
lets you obtain the information about display devices in the current session.
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2. To query all display devices in the current session, call this function in a loop, 
starting with DevNum set to 0, and incrementing DevNum until the function fails. 
To select all display devices in the desktop, use only the display devices that 
have the DISPLAY_DEVICE_ATTACHED_TO_DESKTOP flag in the 
DISPLAY_DEVICE structure.

3. To get information on the display adapter, call EnumDisplayDevices with 
lpDevice set to NULL. For example, DISPLAY_DEVICE.DeviceString 
contains the adapter name.

4. Use EnumDisplaySettings to get DEVMODE. dmPosition.x and 
dmPosition.y are used to get the x coordinate and y coordinate of the 
current display.

5. Try to find the first OpenCL device (winner) associated with the OpenGL 
rendering context by using the loop technique of 2., above. 

6. Inside the loop:

a. Create a window on a specific display by using the CreateWindow 
function. This function returns the window handle (HWND). 

b.  Use GetDC to get a handle to the device context for the client area of a 
specific window, or for the entire screen (OR). Use the CreateDC function 
to create a device context (HDC) for the specified device. 

c. Use ChoosePixelFormat to match an appropriate pixel format supported 
by a device context to a given pixel format specification.

d. Use SetPixelFormat to set the pixel format of the specified device 
context to the format specified.

e. Use wglCreateContext to create a new OpenGL rendering context from 
device context (HDC). 

f. Use wglMakeCurrent to bind the GL context created in the above step 
as the current rendering context.

g. Use clGetGLContextInfoKHR (See Section 9.7 of the OpenCL 
Specification 1.1) and CL_CURRENT_DEVICE_FOR_GL_CONTEXT_KHR 
parameter to get the number of GL associated devices for CL context 
creation. If the number of devices is zero go to the next display in the 
loop. Otherwise, use clGetGLContextInfoKHR (See Section 9.7 of the 
OpenCL Specification 1.1) and the 
CL_CURRENT_DEVICE_FOR_GL_CONTEXT_KHR parameter to get the device 
ID of the CL device associated with OpenGL context.

h.  Use clCreateContext (See Section 4.3 of the OpenCL Specification 
1.1) to create the CL context (of type cl_context).

The following code demonstrates how to use WIN32 Windowing API in CL-GL 
interoperability on multi-GPU environment. 

int xCoordinate = 0;
int yCoordinate = 0;

for (deviceNum = 0; EnumDisplayDevices(NULL, 
deviceNum, 
&dispDevice, 
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0); deviceNum++) 
{

if (dispDevice.StateFlags &
DISPLAY_DEVICE_MIRRORING_DRIVER) 

{
continue;

}

DEVMODE deviceMode;

EnumDisplaySettings(dispDevice.DeviceName, 
ENUM_CURRENT_SETTINGS, 
&deviceMode);

xCoordinate = deviceMode.dmPosition.x;
yCoordinate = deviceMode.dmPosition.y;
WNDCLASS windowclass;

windowclass.style = CS_OWNDC;
windowclass.lpfnWndProc = WndProc;
windowclass.cbClsExtra = 0;
windowclass.cbWndExtra = 0;
windowclass.hInstance = NULL;
windowclass.hIcon = LoadIcon(NULL, IDI_APPLICATION);
windowclass.hCursor = LoadCursor(NULL, IDC_ARROW);
windowclass.hbrBackground = (HBRUSH)GetStockObject(BLACK_BRUSH);
windowclass.lpszMenuName = NULL;
windowclass.lpszClassName = reinterpret_cast<LPCSTR>("SimpleGL");

RegisterClass(&windowclass);
gHwnd = CreateWindow(
reinterpret_cast<LPCSTR>("SimpleGL"), 

reinterpret_cast<LPCSTR>(
"OpenGL Texture Renderer"), 
WS_CAPTION | WS_POPUPWINDOW, 
xCoordinate, 
yCoordinate, 
screenWidth, 
screenHeight, 
NULL, 
NULL, 
windowclass.hInstance, 
NULL);

hDC = GetDC(gHwnd);

pfmt = ChoosePixelFormat(hDC, &pfd);

ret = SetPixelFormat(hDC, pfmt, &pfd);

hRC = wglCreateContext(hDC);

ret = wglMakeCurrent(hDC, hRC);

cl_context_properties properties[] = 
{

CL_CONTEXT_PLATFORM, 
(cl_context_properties) platform,
CL_GL_CONTEXT_KHR,   
(cl_context_properties) hRC,
CL_WGL_HDC_KHR,      
(cl_context_properties) hDC,
0

};

if (!clGetGLContextInfoKHR) 
{

clGetGLContextInfoKHR = (clGetGLContextInfoKHR_fn) 
clGetExtensionFunctionAddress(

"clGetGLContextInfoKHR");
}
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size_t deviceSize = 0;
status = clGetGLContextInfoKHR(properties, 

CL_CURRENT_DEVICE_FOR_GL_CONTEXT_KHR,
0, 
NULL, 
&deviceSize);

if (deviceSize == 0) 
{

// no interopable CL device found, cleanup
wglMakeCurrent(NULL, NULL);
wglDeleteContext(hRC);
DeleteDC(hDC);
hDC = NULL;
hRC = NULL;
DestroyWindow(gHwnd);
// try the next display
continue;

}
ShowWindow(gHwnd, SW_SHOW);
//Found a winner 
break;

}

cl_context_properties properties[] = 
{

CL_CONTEXT_PLATFORM, 
(cl_context_properties) platform,
CL_GL_CONTEXT_KHR,   
(cl_context_properties) hRC,
CL_WGL_HDC_KHR,      
(cl_context_properties) hDC,
0

};

status = clGetGLContextInfoKHR( properties, 
CL_CURRENT_DEVICE_FOR_GL_CONTEXT_KHR,
sizeof(cl_device_id), 
&interopDevice, 
NULL);

// Create OpenCL context from device's id
context = clCreateContext(properties,

1,
&interopDevice,
0,
0,
&status);

       

E.1.3 Limitations

 It is recommended not to use GLUT in a multi-GPU environment. 

E.2 Linux Operating System

E.2.1 Single GPU Environment

5.2.1.1  Creating CL Context from a GL Context

Using GLUT
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1. Use glutInit to initialize the GLUT library and to negotiate a session with 
the windowing system. This function also processes the command-line 
options depending on the windowing system.

2. Use glXGetCurrentContext to get the current rendering context 
(GLXContext). 

3. Use glXGetCurrentDisplay to get the display (Display *) that is associated 
with the current OpenGL rendering context of the calling thread. 

4. Use clGetGLContextInfoKHR (see Section 9.7 of the OpenCL Specification 
1.1) and the CL_CURRENT_DEVICE_FOR_GL_CONTEXT_KHR parameter to get the 
device ID of the CL device associated with the OpenGL context.

5. Use clCreateContext (see Section 4.3 of the OpenCL Specification 1.1) to 
create the CL context (of type cl_context). 

The following code snippet shows how to create an interoperability context using 
GLUT in Linux.

glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE);
glutInitWindowSize(WINDOW_WIDTH, WINDOW_HEIGHT);
glutCreateWindow("OpenCL SimpleGL");

gGLXContext glCtx = glXGetCurrentContext();

Cl_context_properties cpsGL[] = 
{

CL_CONTEXT_PLATFORM,

(cl_context_properties)platform,

CL_GLX_DISPLAY_KHR,

(intptr_t) glXGetCurrentDisplay(), 

CL_GL_CONTEXT_KHR, 

( intptr_t) glCtx, 0}; 

status = clGetGLContextInfoKHR(cpsGL, 
CL_CURRENT_DEVICE_FOR_GL_CONTEXT_KHR,
sizeof(cl_device_id), 
&interopDevice, 
NULL);

// Create OpenCL context from device's id
context = clCreateContext(cpsGL,

1,
&interopDevice,
0,
0,
&status);

Using X Window System

1. Use XOpenDisplay to open a connection to the server that controls a display.

2. Use glXChooseFBConfig to get a list of GLX frame buffer configurations that 
match the specified attributes.

3. Use glXChooseVisual to get a visual that matches specified attributes.
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4. Use XCreateColormap to create a color map of the specified visual type for 
the screen on which the specified window resides and returns the colormap 
ID associated with it. Note that the specified window is only used to 
determine the screen.

5. Use XCreateWindow to create an unmapped sub-window for a specified 
parent window, returns the window ID of the created window, and causes the 
X server to generate a CreateNotify event. The created window is placed on 
top in the stacking order with respect to siblings.

6. Use XMapWindow to map the window and all of its sub-windows that have had 
map requests. Mapping a window that has an unmapped ancestor does not 
display the window, but marks it as eligible for display when the ancestor 
becomes mapped. Such a window is called unviewable. When all its 
ancestors are mapped, the window becomes viewable and is visible on the 
screen if it is not obscured by another window. 

7. Use glXCreateContextAttribsARB to initialize the context to the initial state 
defined by the OpenGL specification, and returns a handle to it. This handle 
can be used to render to any GLX surface.

8. Use glXMakeCurrent to make argrument3 (GLXContext) the current GLX 
rendering context of the calling thread, replacing the previously current 
context if there was one, and attaches argument3 (GLXcontext) to a GLX 
drawable, either a window or a GLX pixmap.

9. Use clGetGLContextInfoKHR to get the OpenCL-OpenGL interoperability 
device corresponding to the window created in step 5.

10. Use clCreateContext to create the context on the interoperable device 
obtained in step 9.

The following code snippet shows how to create a CL-GL interoperability context 
using the X Window system in Linux. 

Display *displayName = XOpenDisplay(0);

int nelements;
GLXFBConfig *fbc = glXChooseFBConfig(displayName, 
DefaultScreen(displayName), 0, &nelements);
      static int attributeList[] = { GLX_RGBA, 

GLX_DOUBLEBUFFER, 
GLX_RED_SIZE, 
1, 
GLX_GREEN_SIZE, 
1, 
GLX_BLUE_SIZE, 
1, 
None 
};

XVisualInfo *vi = glXChooseVisual(displayName, 
DefaultScreen(displayName),
attributeList);

XSetWindowAttributes swa;
swa.colormap = XCreateColormap(displayName, 

RootWindow(displayName, vi->screen), 
vi->visual, 
AllocNone);

swa.border_pixel = 0;
swa.event_mask = StructureNotifyMask;
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 Window win = XCreateWindow(displayName,                                      
RootWindow(displayName, vi->screen),
                                10,
                                10,
                                WINDOW_WIDTH,
                                WINDOW_HEIGHT,
                                0,
                                vi->depth,
                                InputOutput,
                                vi->visual,
                                CWBorderPixel|CWColormap|CWEventMask,
                                &swa);

XMapWindow (displayName, win);

std::cout << "glXCreateContextAttribsARB " 
<< (void*) glXGetProcAddress((const

GLubyte*)"glXCreateContextAttribsARB") 
              << std::endl;

GLXCREATECONTEXTATTRIBSARBPROC glXCreateContextAttribsARB = 
(GLXCREATECONTEXTATTRIBSARBPROC) 

glXGetProcAddress((const
GLubyte*)"glXCreateContextAttribsARB");

int attribs[] = {
GLX_CONTEXT_MAJOR_VERSION_ARB, 3,
GLX_CONTEXT_MINOR_VERSION_ARB, 0,
0
};

GLXContext ctx = glXCreateContextAttribsARB(displayName, 
*fbc, 
0, 
true, 
attribs);

glXMakeCurrent (displayName, 

win, 

ctx);

cl_context_properties cpsGL[] = { 
CL_CONTEXT_PLATFORM,(cl_context_properties)platform,
CL_GLX_DISPLAY_KHR, (intptr_t) glXGetCurrentDisplay(),
CL_GL_CONTEXT_KHR, (intptr_t) gGlCtx, 0
                                };
status = clGetGLContextInfoKHR( cpsGL,
                                    CL_CURRENT_DEVICE_FOR_GL_CONTEXT_KHR,
                                    sizeof(cl_device_id),
                                    &interopDeviceId,
                                    NULL);

// Create OpenCL context from device's id
context = clCreateContext(cpsGL,

1,
&interopDeviceId,
0,
0,
&status);

E.2.2 Multi-GPU Configuration

5.2.2.1  Creating CL Context from a GL Context

Using X Window System
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1. Use XOpenDisplay to open a connection to the server that controls a display.

2. Use ScreenCount to get the number of available screens. 

3. Use XCloseDisplay to close the connection to the X server for the display 
specified in the Display structure and destroy all windows, resource IDs 
(Window, Font, Pixmap, Colormap, Cursor, and GContext), or other 
resources that the client created on this display.

4. Use a FOR loop to enumerate the displays. To change the display, change 
the value of the environment variable DISPLAY. 

5. Inside the loop:

a. Use putenv to set the environment variable DISPLAY with respect to the 
display number. 

b. Use OpenDisplay to open a connection to the server that controls a 
display.

c. Use glXChooseFBConfig to get a list of GLX frame buffer configurations 
that match the specified attributes.

d. Use glXChooseVisual to get a visual that matches specified attributes.

e. Use XCreateColormap to create a color map of the specified visual type 
for the screen on which the specified window resides and returns the 
colormap ID associated with it. Note that the specified window is only 
used to determine the screen.

f. Use XCreateWindow to create an unmapped sub-window for a specified 
parent window, returns the window ID of the created window, and causes 
the X server to generate a CreateNotify event. The created window is 
placed on top in the stacking order with respect to siblings.

g. Use XMapWindow to map the window and all of its sub-windows that have 
had map requests. Mapping a window that has an unmapped ancestor 
does not display the window but marks it as eligible for display when the 
ancestor becomes mapped. Such a window is called unviewable. When 
all its ancestors are mapped, the window becomes viewable and is 
visible on the screen, if it is not obscured by another window.

h. Use glXCreateContextAttribsARB function to initialize the context to 
the initial state defined by the OpenGL specification and return a handle 
to it. This handle can be used to render to any GLX surface.

i. Use glXMakeCurrent to make argrument3 (GLXContext) the current 
GLX rendering context of the calling thread, replacing the previously 
current context, if there was one, and to attach argument3 (GLXcontext) 
to a GLX drawable, either a window or a GLX pixmap.

j. Use clGetGLContextInfoKHR to get the number of OpenCL-OpenGL 
interoperability devices corresponding to the window created in f, above.

k. If the number of interoperable devices is zero, use glXDestroyContext 
to destroy the context created at step h, and go to step a; otherwise, exit 
from the loop (an OpenCL-OpenGL interoperable device has been 
found).  
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6. Use clGetGLContextInfoKHR to get the OpenCL-OpenGL interoperable 
device id.

7. Use clCreateContext to create the context on the interoperable device 
obtained in the previous step.

The following code segment shows how to create an OpenCL-OpenGL 
interoperability context on a system with multiple GPUs.

displayName = XOpenDisplay(NULL);
int screenNumber = ScreenCount(displayName);
XCloseDisplay(displayName);

for (int i = 0; i < screenNumber; i++)
{

if (isDeviceIdEnabled())
{

if (i < deviceId)
{

continue;
}

}
char disp[100];
sprintf(disp, "DISPLAY=:0.%d", i);
putenv(disp);
displayName = XOpenDisplay(0);
int nelements;
GLXFBConfig *fbc = glXChooseFBConfig(displayName, 

DefaultScreen(displayName), 
0, 
&nelements);

static int attributeList[] = { GLX_RGBA,
GLX_DOUBLEBUFFER,
GLX_RED_SIZE,
1,
GLX_GREEN_SIZE,
1,
GLX_BLUE_SIZE,
1,
None

};

XVisualInfo *vi = glXChooseVisual(displayName,
DefaultScreen(displayName),
attributeList);

XSetWindowAttributes swa;
swa.colormap = XCreateColormap(displayName, 

RootWindow(displayName, vi->screen), 
vi->visual, 
AllocNone);

swa.border_pixel = 0;
swa.event_mask = StructureNotifyMask;

win = XCreateWindow(displayName,
RootWindow(displayName, vi->screen),
10,
10,
width,
height,
0,
vi->depth,
InputOutput,
vi->visual,
CWBorderPixel|CWColormap|CWEventMask,
&swa);

XMapWindow (displayName, win);
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int attribs[] = {
GLX_CONTEXT_MAJOR_VERSION_ARB, 3,
GLX_CONTEXT_MINOR_VERSION_ARB, 0,
0

};

GLXContext ctx = glXCreateContextAttribsARB(displayName, 
*fbc, 
0, 
true, 
attribs);

glXMakeCurrent (displayName, 
win, 
ctx);

gGlCtx = glXGetCurrentContext();
properties cpsGL[] = { 
CL_CONTEXT_PLATFORM, (cl_context_properties)platform,
CL_GLX_DISPLAY_KHR, (intptr_t) glXGetCurrentDisplay(),
CL_GL_CONTEXT_KHR, (intptr_t) gGlCtx, 0

};

size_t deviceSize = 0;
status = clGetGLContextInfoKHR(cpsGL,

CL_CURRENT_DEVICE_FOR_GL_CONTEXT_KHR,
0,
NULL,
&deviceSize);

int numDevices = (deviceSize / sizeof(cl_device_id));

if(numDevices == 0)
{

glXDestroyContext(glXGetCurrentDisplay(), gGlCtx);
continue;
}

else 
{

//Interoperable device found
std::cout<<"Interoperable device found "<<std::endl;
break;

        }
}

status = clGetGLContextInfoKHR( cpsGL,
CL_CURRENT_DEVICE_FOR_GL_CONTEXT_KHR,
sizeof(cl_device_id),
&interopDeviceId,
NULL);

// Create OpenCL context from device's id
context = clCreateContext(cpsGL,

1,
&interopDeviceId,
0,
0,
&status);

E.3 Additional GL Formats Supported

The following is a list of GL formats beyond the minimum set listed in The 
OpenCL Extension Specification, v 1.2 that AMD supports.
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Table E.1 AMD-Supported GL Formats

GL internal format CL images format

GL_ALPHA8 CL_A,CL_UNORM8

GL_R8, CL_R, CL_UNORM_INT8

GL_R8UI CL_R, CL_UNSIGNED_INT8

GL_R8I CL_R, CL_SIGNED_INT8

GL_RG8 CL_RG, CL_UNORM_INT8

GL_RG8UI CL_RG, CL_UNSIGNED_INT8

GL_RG8I CL_RG, CL_SIGNED_INT8

GL_RGB8 CL_RGB, CL_UNORM_INT8

GL_RGB8UI CL_RGB, CL_UNSIGNED_INT8

GL_RGB8I CL_RGB, CL_SIGNED_INT8

GL_R16 CL_R, CL_UNORM_INT16

GL_R16UI CL_R, CL_UNSIGNED_INT16

GL_R16I CL_R, CL_SIGNED_INT16

GL_RG16 CL_RG, CL_UNORM_INT16

GL_RG16UI CL_RG, CL_UNSIGNED_INT16

GL_RG16I CL_RG, CL_SIGNED_INT16

GL_RGB16 CL_RGB, CL_UNORM_INT16

GL_RGB16UI CL_RGB, CL_UNSIGNED_INT16

GL_RGB16I CL_RGB, CL_SIGNED_INT16

GL_R32I CL_R, CL_SIGNED_INT32

GL_R32UI CL_R, CL_UNSIGNED_INT32

GL_R32F CL_R, CL_FLOAT

GL_RG32I CL_RG, CL_SIGNED_INT32

GL_RG32UI CL_RG, CL_UNSIGNED_INT32

GL_RG32F CL_RG, CL_FLOAT

GL_RGB32I CL_RGB, CL_SIGNED_INT32

GL_RGB32UI CL_RGB, CL_UNSIGNED_INT32

GL_RGB32F CL_RGB, CL_FLOAT
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Appendix F 
New and deprecated functions in 
OpenCL 2.0

F.1 New built-in functions in OpenCL 2.0

F.1.1 Work Item Functions

F.1.2 Integer functions

F.1.3 Synchronization Functions

get_enqueued_local_size local sizes in uniform part of NDRange

get_global_linear_id unique 1D index for each work item in the 
NDRange

get_local_linear_id unique 1D index for each work item in the 
work group

ctz count trailing zero bits

work_group_barrier replaces barrier, adds scope
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F.1.4 Address space qualifier functions

F.1.5 Atomic functions

F.1.6 Image Read and Write Functions

F.1.7 Work group functions

to_global convert generic pointer to global pointer

to_local convert genericpointer to local pointer

to_private convert generic pointer to private pointer

get_fence get fence appropriate to address space

atomic_init Initialize atomic value

atomic_work_item_fence memory fence

atomic_store[_explicit] atomic store

atomic_load[_explicit] atomic load

atomic_exchange[_explicit] atomic exchange

atomic_compare_exchange_strong[_explicit] atomic compare and exchange (CAS)

atomic_compare_exchange_weak[_explicit] atomic compare and exchange (CAS)

atomic_fetch_add[_explicit] atomic fetch+add

atomic_fetch_sub[_explicit] atomic fetch+sub

atomic_fetch_or[_explicit] atomic fetch+or

atomic_fetcn_xor[_explicit] atomic fetch+xor

atomic_fetch_and[_explicit] atomic fetch+and

atomic_fetch_max_[explicit] atomic fetch+max

atomic_fetch_min[_explicit] atomic fetch+min

atomic_flag_test_and_set[_explicit] atomic flag set

atomic_flag_clear[_explicit] atomic flag clear

read_imagef Read from 2D depth [array] image

write_imagef Write to 2D depth [array] image

work_group_all Test all members of work group (and 
reduction)

work_group_any Test any member of work group (or 
reduction)

work_group_broadcast Brodcast value to every member of work 
group

work_group_reduce_add Sum reduction across work group

work_group_reduce_max Max reduction across work group

work_group_reduce_min Min reduction across work group

work_group_scan_exclusive_add Sum exclusive scan across work group

work_group_scan_exclusive_max Max exclusive scan across work group
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F.1.8 Pipe functions

F.1.9 Enqueueing Kernels

work_group_scan_exclusive_min Min exclusive scan across work group

work_group_scan_inclusive_add Sum inclusive scan across work group

work_group_scan_inclusive_max Max inclusive scan across work group

work_group_scan_inclusive_min Min inclusive scan across work group

read_pipe Read from pipe

write_pipe Write to pipe

reserve_read_pipe Reserve reads from pipe

reserve_write_pipe Reserve writes to pipe

commit_read_pipe Commit reserved pipe reads

commit_write_pipe Commit reserved pipe writes

is_valid_reserve_id Test reservation value

work_group_reserve_read_pipe Work group read reservation

work_group_reserve_write_pipe work group write reservation

work_group_commit_read_pipe work group commit read reservation

work_group_commit_write_pipe work group commit write reservation

get_pipe_num_packets get current number of packets in pipe

get_pipe_max_packets get capacity of pipe

enqueue_kernel Enqueue block as kernel

get_kernel_work_group_size Query max work group size

get_kernel_preferred_work_group_size_m
ultiple

Query preferred divisor of work group size

enqueue_marker Enqueue a marker

retain_event Increment refcount of event

release_event Decrement refcount of event

create_user_event Create user event

is_valid_event Check if event is valid

set_user_event_status Signal user event

capture_event_profiling_info Schedule capture of profiling info

get_default_queue Get default queue

ndrange_1D Create 1D NDRange

ndrange_2D Create 2D NDRange

ndrange_3D Create 3D NDRange



A M D  A C C E L E R A T E D P A R A L L E L  P R O C E S S I N G

F-4 Appendix F: New and deprecated functions in OpenCL 2.0
Copyright © 2014 Advanced Micro Devices, Inc. All rights reserved.   

F.1.10 Sub-groups

F.2 Deprecated built-ins

get_sub_group_size Get size of current sub group

get_max_sub_group_size Get size of largest sub group

get_num_sub_groups Get number of sub groups in current work 
group

get_enqueued_num_sub_groups Get number of sub groups in uniform work 
group

get_sub_group_id Get id of current sub group

get_sub_group_local_id Get ID of workitem in sub group

sub_group_barrier Sub group barrier

sub_group_all Test all members of work group (and 
reduction)

sub_group_any Test any member of work group (or 
reduction)

sub_group_broadcast Brodcast value to every member of work 
group

sub_group_reduce_add Sum reduction across sub group

sub_group_reduce_max Max reduction across sub group

sub_group_reduce_min Min reduction across sub group

sub_group_scan_exclusive_add Sum exclusive scan across sub group

sub_group_scan_exclusive_max Max exclusive scan across sub group

sub_group_scan_exclusive_min Min exclusive scan across sub group

sub_group_scan_inclusive_add Sum inclusive scan across sub group

sub_group_scan_inclusive_max Max inclusive scan across sub group

sub_group_scan_inclusive_min Min inclusive scan across sub group

sub_group_reserve_read_pipe sub group read reservation

sub_group_reserve_write_pipe sub group write reservation

sub_group_commit_read_pipe sub group commit read reservation

sub_group_commit_write_pipe sub group commit write reservation

get_kernel_sub_group_count_for_ndrange number of sub groups in uniform part of 
NDRange

get_kernel_max_sub_group_size_for_ndra
nge

maximum sub group size for a block

barrier

mem_fence

read_mem_fence
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write_mem_fence

atomic_add

atomic_sub

atomic_xchg

atomic_inc

atomic_dec

atomic_cmpxchg

atomic_min

atomic_max

atomic_and

atomic_or

atomic_xor
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F.3 New runtime APIs in OpenCL 2.0

F.3.1 New Types

F.3.2 New Macros

cl_device_svm_capabilities Returned by 
clGetDeviceInfo(...CL_DEVICE_SVM_CAP
ABILITIES...)

cl_queue_properties See 
clCreateCommandQueueWithProperties

cl_svm_mem_flags See clSVMAlloc

cl_pipe_properties See clCreatePipe

cl_pipe_info See clGetPipeInfo

cl_sampler_properties See clCreateSamplerWithProperties

cl_kernel_exec_info See clSetKernelExecInfo

cl_image_desc A field name changed from buffer to 
mem_object

cl_kernel_sub_group_info See clGetKernelSubGroupInfoKHR

CL_INVALID_PIPE_SIZE

CL_INVALID_DEVICE_QUEUE

CL_VERSION_2_0

CL_DEVICE_QUEUE_ON_HOST_PROPERTIES

CL_DEVICE_MAX_READ_WRITE_IMAGE_ARGS

CL_DEVICE_MAX_GLOBAL_VARIABLE_SIZE

CL_DEVICE_QUEUE_ON_DEVICE_PROPERTIES

CL_DEVICE_QUEUE_ON_DEVICE_PREFERRED_SIZE

CL_DEVICE_QUEUE_ON_DEVICE_MAX_SIZE

CL_DEVICE_MAX_ON_DEVICE_QUEUES

CL_DEVICE_MAX_ON_DEVICE_EVENTS

CL_DEVICE_SVM_CAPABILITIES

CL_DEVICE_GLOBAL_VARIABLE_PREFERRED_TOTAL_SIZE

CL_DEVICE_MAX_PIPE_ARGS

CL_DEVICE_PIPE_MAX_ACTIVE_RESERVATIONS

CL_DEVICE_PIPE_MAX_PACKET_SIZE

CL_DEVICE_PREFERRED_PLATFORM_ATOMIC_ALIGNMENT

CL_DEVICE_PREFERRED_GLOBAL_ATOMIC_ALIGNMENT

CL_DEVICE_PREFERRED_LOCAL_ATOMIC_ALIGNMENT

CL_QUEUE_ON_DEVICE

CL_QUEUE_ON_DEVICE_DEFAULT

CL_DEVICE_SVM_COARSE_GRAIN_BUFFER

CL_DEVICE_SVM_FINE_GRAIN_BUFFER

CL_DEVICE_SVM_FINE_GRAIN_SYSTEM
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CL_DEVICE_SVM_ATOMICS

CL_QUEUE_SIZE

CL_MEM_SVM_FINE_GRAIN_BUFFER

CL_MEM_SVM_ATOMICS

CL_sRGB

CL_sRGBx

CL_sRGBA

CL_sBGRA

CL_ABGR

CL_MEM_OBJECT_PIPE

CL_MEM_USES_SVM_POINTER

CL_PIPE_PACKET_SIZE

CL_PIPE_MAX_PACKETS

CL_SAMPLER_MIP_FILTER_MODE

CL_SAMPLER_LOD_MIN

CL_SAMPLER_LOD_MAX

CL_PROGRAM_BUILD_GLOBAL_VARIABLE_TOTAL_SIZE

CL_KERNEL_ARG_TYPE_PIPE

CL_KERNEL_EXEC_INFO_SVM_PTRS

CL_KERNEL_EXEC_INFO_SVM_FINE_GRAIN_SYSTEM

CL_COMMAND_SVM_FREE

CL_COMMAND_SVM_MEMCPY

CL_COMMAND_SVM_MEMFILL

CL_COMMAND_SVM_MAP

CL_COMMAND_SVM_UNMAP

CL_PROFILING_COMMAND_COMPLETE
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F.3.3 New API calls

F.4 Deprecated runtimes

clCreateCommandQueueWithProperties See section 5.1

clCreatePipe See section 5.4.1

clGetPipeInfo See section 5.4.2

clSVMAlloc See section 5.6.1

clSVMFree See section 5.6.1

clEnqueueSVMFree See section 5.6.1

clEnqueueSVMMemcpy See section 5.6.1

clEnqueueSVMMemFill See section 5.6.1

clEnqueueSVMMap See section 5.6.1

clEnqueueSVMUnmap See section 5.6.1

clCreateSamplerWithProperties See section 5.7.1

clSetKernelArgSVMPointer See section 5.9.2

clSetKernelExecInfo See section 5.9.2

clGetKernelSubGroupInfoKHR See section 9.17.2.1

clCreateCommandQueue

clCreateSampler

clEnqueueTask
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Appendix G 
Standard Portable Intermediate Rep-
resentation (SPIR)

This chapter provides an overview of the Standard Portable Intermediate 
Representation (SPIR) format. Application developers can use SPIR to avoid 
shipping kernel source and to manage the proliferation of devices and drivers 
from multiple vendors.

SPIR is a portable encoding of device programs. For example, SPIR 1.2 is an 
encoding of OpenCL C (version 1.2) device programs in LLVM IR; SPIR 1.2 
defines how any OpenCL C (version 1.2) device program can be encoded in 
LLVM (version 3.2). SPIR 2.0 has yet to be published. For details, see the SPIR 
specification.

Open-source tools such as CLANG compilers can be used for generating the 
SPIR output for any OpenCL kernel program. For information about some open 
source generators that are used to generate SPIR, see 
https://github.com/KhronosGroup/SPIR.

G.1 Sample consumption of SPIR binaries

The Simple SPIR sample in the AMD APP SDK demonstrates an implementation 
for the consumption of SPIR binaries.

The SPIR binary, MatrixTranspose_Kernels.fe.bc, is loaded by using the 
clCreateProgramWithBinary OpenCL API  to generate OpenCL Program.

The API is declared as follows:

cl_program clCreateProgramWithBinary(cl_context 
context,cl_uint num_devices,const cl_device_id *device_list, 
const size_t *lengths, const unsigned char **binaries, 
cl_int *binary_status, cl_int *errcode_ret);

The array of SPIR binaries for various platforms is given under the binaries 
argument of the clCreateProgramWithBinary API.

The generated OpenCL Program is built using  the clBuildProgram OpenCL 
API with the following options provided:

cl_int  clBuildProgram (cl_program program,cl_uint 
num_devices,const cl_device_id *device_list, const char 
*options, (CL_CALLBACK *pfn_notify)(cl_program program, void 
*user_data), void *user_data)

https://github.com/KhronosGroup/SPIR
https://www.khronos.org/faq/spir
https://www.khronos.org/faq/spir
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options = “ –x spir -spir-std=1.2” 

-x spir

The last line indicates that the binary used is in SPIR format.

-spir-std=1.2 

This option tells the API that the SPIR binary is generated using the SPIR 1.2 
specification. The number corresponding to the version of SPIR specification 
used must be provided.

In this sample, the SPIR related options are passed through the 
SimpleSpir_oclflags.txt file.
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