
Getting Started 1 of 19

AMD APP SDK v2.9.1

Getting Started

1 Overview

The AMD APP SDK is provided to the developer community to accelerate the programming in a
heterogeneous environment by enabling AMD GPUs to work in concert with the system's x86
CPU cores. The SDK provides samples, documentation, and other materials to quickly get you
started leveraging accelerated compute using OpenCL™, Bolt, OpenCV, C++ AMP for your
C/C++ application, or Aparapi for your Java application.

This document provides instructions on using the AMD APP SDK. The necessary prerequisite
installations, environment settings, build and execute instructions for the samples are provided.

Review the following quick links to the important sections:

 Section 2, “APP SDK on Windows”

� Section 2.1, “Installation”

� Section 2.2, “General Prerequisites”

� Section 2.3, “OpenCL”

� Section 2.4, “BOLT”

� Section 2.5, “C++ AMP”

� Section 2.6, “Aparapi”

� Section 2.7, “OpenCV”

 Section 3, “APP SDK on Linux”

� Section 3.1, “Installation”

� Section 3.2, “General prerequisites”

� Section 3.3, “OpenCL”

� Section 3.4, “BOLT”

� Section 3.5, “Aparapi”

� Section 3.6, “OpenCV”

 Section Appendix A, “Important Notes”

 Section Appendix C, “CMAKE”

 Section Appendix D, “Building OpenCV from sources”

2 of 19 Getting Started

2 APP SDK on Windows

2.1 Installation

The AMD APP SDK 2.9.1 installer is delivered as a self-extracting installer for 32-bit and 64-bit
systems on Windows. For details on how to install the APP SDK on Windows, see the AMD APP
SDK Installation Notes document. The default installation path is C:\Users\<userName>\AMD
APP SDK\<appSdkVersion>\.

2.2 General Prerequisites

AMD APP SDK 2.9.1 is supported on the following Windows versions:

 Windows 8.1 (32-bit/64-bit)

 Windows 7 (32-bit/64-bit)

The AMD APP SDK includes sample applications for OpenCL, Bolt, C++ AMP, Aparapi and
OpenCV-CL. To build and execute these samples, you must ensure that two sets of prerequisites
are met: the common prerequisites that apply to all the samples, listed in this section; and the
specific prerequisites required for the specific category of the samples, listed in the later sections
of this document.

Before you build and execute the samples, ensure that you have installed the following:

 Microsoft Visual Studio 2012 redistributable package
This package is required for running the pre-built binaries of the samples. Installing the AMD
Catalyst Driver installs the Visual Studio 2012 redistributable by default.

 Microsoft Visual Studio version 2010 and/or higher
This package is required for building and executing the samples.

 CMake version 2.8.0 or higher (optional)
CMake is used for generating the AMD APP SDK sample make files or Visual Studio projects.
In addition to Visual Studio solution/project files for samples, the AMD APP SDK includes
CMake files. CMake supports creating make files across different platforms and generating
project files across different IDEs including Visual Studio.
For details on using CMake to generate make files or Visual Studio files for APP SDK
samples, see Appendix C, “CMAKE”.

Note: The AMD APP SDK 2.9.1 package for Windows includes Visual Studio 2010 and 2012
projects. Visual Studio 2013 projects are not provided in the AMD APP SDK package. However,
the CMake files of the samples can be used to generate VS 2013 project files.

2.3 OpenCL

2.3.1 Prerequisites

In addition to the common prerequisites mentioned in Section 2.2, “General Prerequisites”, to
build and run OpenCL samples that use OpenGL and DirectX, you must install one of the
following:

http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/07/AMD_APP_SDK_Installation_Notes.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/07/AMD_APP_SDK_Installation_Notes.pdf

Getting Started 3 of 19

 Windows SDK 8.0 or above OR

2.3.2 How to run the pre-built samples

The AMD APP SDK ships with pre-built binaries of OpenCL samples. To execute the samples,
you must perform the following steps:

 Open a command prompt.

 Change the directory to the appropriate architecture directory (x86 or x86_64) within
<<APPSDKSamplesInstallPath>>\samples\opencl\bin.

 Run the samples by typing the name of the executables.
To review the command line arguments for samples, see the respective sample documents.

2.3.3 How to rebuild the samples

Building with Visual Studio Solution files –

The AMD APP SDK installation includes a master Visual Studio Solution file for OpenCL samples.
This solution file contains Visual Studio projects of all the OpenCL samples. In the current version
of APP SDK, master solution files for Microsoft Visual Studio 2010 (OpenCLSamplesVS10.sln)
and Microsoft Visual Studio 2012(OpenCLSamplesVS12.sln) are provided. These files are
located at <<APPSDKSamplesInstallPath>>\samples\opencl\.

To build a sample:

 Open the OpenCLSamplesVS10.sln file with Microsoft Visual Studio 2010 Professional
Edition or the OpenCLSamplesVS12.sln file with Microsoft Visual Studio 2012 Professional
Edition.

 To build all the projects, select Build > Build Solution.
To build a specific project, select the project file in the Solutions Explorer and select Build to
build the particular sample.

Building with Visual Studio Solution files by using the Intel Compiler (icl) –

The AMD APP SDK installation includes a master Visual Studio Solution file for OpenCL samples.
This solution file contains Visual Studio projects of all the OpenCL samples. In the current version
of APP SDK, master solution files for Microsoft Visual Studio 2010 (OpenCLSamplesVS10.sln)
and Microsoft Visual Studio 2012(OpenCLSamplesVS12.sln) are provided. These files are
located at <<APPSDKSamplesInstallPath>>\samples\opencl\.

To build a sample:

 Open the OpenCLSamplesVS10.sln file with Microsoft Visual Studio 2010 Professional
Edition or the OpenCLSamplesVS12.sln file with Microsoft Visual Studio 2012 Professional
Edition.

 Right-click on a project file, and select Properties.

 Under Configuration Properties | General, change the Platform Toolset item to Intell C++
Compiler, and click OK.

 To build the sample, right-click on the project file, and select Build.

4 of 19 Getting Started

2.4 BOLT

2.4.1 Prerequisites

In addition to the common prerequisites mentioned in Section 2.2, “General Prerequisites”, to
build and run the BOLT samples you must ensure the following installations and environment
variable settings:

 Microsoft Visual Studio 2012 or higher for Bolt C++AMP samples and Microsoft Visual Studio
2010 or higher for Bolt OpenCL samples

 The TBB library: http://threadingbuildingblocks.org/download.

� Required for running the Bolt samples using the multi-core CPU path.

� BOLT 1.2 has been tested with the TBB release 4.2 Update 4.

 Download and install the Bolt 1.2 library: http://developer.amd.com/tools-andsdks/opencl-
zone/opencl-libraries/bolt-c-template-library/.
Bolt can also be built from the github sources: https://github.com/HSA-
Libraries/Bolt/releases/tag/v1.2GA.

Environment Variables –

Set the following environment variables:

 Set the TBB_ROOT environmental variable to the root directory of the installed TBB binaries.

 Set the BOLTLIB_DIR environmental variable to the root directory to which Bolt is extracted.
For example, if VS 2012 Bolt 1.2 is downloaded, the path will be: <Bolt Install
Path>\Bolt-1.1-VS20123\Bolt-1.1-VS2012\.

 Append the PATH environment variable with the directory containing all the TBB binaries. For
example, on a 64-bit machine with VS 2012, this path will be:
%TBB_ROOT%\bin\intel64\vc11\.

2.4.2 How to run the pre-built samples

The AMD APP SDK ships with pre-built binaries of BOLT samples. To execute the samples, you
must perform the following steps:

 Open a command prompt.

 Change the directory to the appropriate directory (x86 or x86_64) within
<<APPSDKSamplesInstallPath>>\samples\bolt\bin.

 Run the samples by typing the name of their executables.
To review the command line arguments for samples, see the respective sample documents.

2.4.3 How to rebuild the samples

The AMD APP SDK installation includes includes a master Visual Studio Solution file for Bolt
samples. This solution file contains Visual Studio projects of all the Bolt samples. In the current
version of APP SDK, master solution files for Microsoft Visual Studio 2010
(BoltSamplesVS10.sln) and Microsoft Visual Studio 2012 (BoltSamplesVS12.sln) are provided.
These files are located at $<APPSDKSamplesInstallPath>\samples\bolt\.

Open the OpenCLSamplesVS10.sln file with Microsoft Visual Studio 2010 Professional Edition or the OpenCLSamplesVS12.sln file with Microsoft Visual Studio 2012 Professional Edition.
Righ
http://developer.amd.com/tools-andsdks/opencl-zone/opencl-libraries/bolt-c-template-library/
https://github.com/HSA-Libraries/Bolt/releases/tag/v1.2GA

Getting Started 5 of 19

To build a sample:

 Open the BoltSamplesVS10.sln or BoltSamplesVS12.sln file.

 Select the appropriate build configuration, Debug or Release.

 To build TBB-enabled Bolt samples, select the corresponding build configuration, Debug_TBB
or Release_TBB.
To build all the projects, select Build > Build Solution.
To build a specific project. select the project file in the Solutions Explorer and select Build to
build the sample.

2.5 C++ AMP

2.5.1 Prerequisites

C++ AMP is supported only on Microsoft Visual Studio 2012 and higher versions. Also, C++ AMP
samples do not work on Linux. Therefore, to build and run C++AMP samples, install Microsoft
Visual Studio 2012 or higher.

2.5.2 How to run the pre-built samples

The AMD APP SDK ships with pre-built binaries of the C++AMP samples. To execute the
samples, you must perform the following steps:

 Open a command prompt.

 Change the directory to the appropriate architecture directory (x86 or x86_64) within
<<APPSDKSamplesInstallPath>>\samples\C++Amp\bin.

 Run the samples by typing the name of the executables.
To review the command line arguments for samples, see the respective sample documents.

2.5.3 How to rebuild the samples

The AMD APP SDK installation includes a master Visual Studio Solution file for the C++AMP
samples. This solution file contains Visual Studio projects of all the C++AMP samples. In the
current version of APP SDK, master solution files for Microsoft Visual Studio 2012
(C++AmpSamplesVS12.sln) are provided. These files are located at
$<APPSDKSamplesInstallPath>\samples\C++Amp\.

To build a sample:

 Open the C++AmpSamplesVS12.sln file.

 Select the appropriate build configuration, Debug or Release.

 To build all the projects, select Build > Build Solution.
To build a specific project, select the project file in the Solutions Explorer and select Build to
build the sample.

2.6 Aparapi

The samples for Aparapi are different from the samples for the other platforms in that all the
Aparapi samples use Java. Eclipse can be used to build and execute Aparapi samples.

6 of 19 Getting Started

2.6.1 Prerequisites

To build and run the Aparapi samples, you must ensure that the following prerequisites are met:

 Install Java JDK 7: http://www.oracle.com/technetwork/java/javase/downloads/jdk7-
downloads-1880260.html.

 Install the ANT build tool: https://ant.apache.org/bindownload.cgi.

 Install the Aparapi library. Aparapi samples work with the latest Aparapi trunk source in the
link http://code.google.com/p/aparapi/source/browse/#svn%2Ftrunk. Source files from this
link must be fetched and built. The procedure to compile the sources is provided in the wiki
pages of Aparapi:

� https://code.google.com/p/aparapi/wiki/DevelopersGuideWindows

To build and run the Aparapi examples, you must configure the following environment variables:

 Set JAVA_HOME to the directory containing JRE/JDK.
For example, specify: set JAVA_HOME=C:\Program Files\Java\jdk1.7.0_55\.

 Set ANT_HOME to the directory containing ANT, version 1.8 or above.
For example, if ANT is installed under C:\ANT, specify: set ANT_HOME=C:\Ant\apache-
ant-1.9.3-bin\apache-ant-1.9.3\.

 Set LIBAPARAPI to the directory in which the Aparapi binaries (aparapi.jar) are created
after compiling.
For example, specify: LIBAPARAPI = C:\Aparapi\.

 Append the PATH environment variable with the directory containing the Java, ANT, and
Aparapi binaries, i.e. %JAVA_HOME%\bin, %ANT_HOME%\bin, and %LIBAPARAPI% (needed
if running from Eclipse).

2.6.2 How to run the pre-built samples

The prebuilt jar files for the Aparapi samples are located in the respective sample directory. For
example, the Mandel prebuilt jar file for the Mandel sample is located under:
$<APPSDKSamplesInstallPath>\samples\aparapi\examples\Mandel\.

To execute the sample, run the appropriate <example>.bat from the command line.
<example>.bat -h lists the command-line options provided by the sample.

2.6.3 How to rebuild the samples

In order to build all the samples, run the build.bat batch file under
$<APPSDKSamplesInstallPath>\samples\aparapi.

To build individual samples, go to the respective sample directory and type ant.
For example, to compile the Mandel sample, run:
$<APPSDKSamplesInstallPath>\samples\aparapi\examples\Mandel> ant

Using Eclipse –

The APP SDK Aparapi samples also have Eclipse project files to allow building and executing
using the Eclipse IDE. AMD APP SDK 2.9.1 has been verified to work with Eclipse Standard 4.3.2
version (https://www.eclipse.org/downloads/packages/eclipse-standard-432/keplersr2).

https://www.eclipse.org/downloads/packages/eclipse-standard-432/keplersr2
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
https://ant.apache.org/bindownload.cgi
http://code.google.com/p/aparapi/source/browse/#svn%2Ftrunk
https://code.google.com/p/aparapi/wiki/DevelopersGuideWindows

Getting Started 7 of 19

In addition to the general prerequisites mentioned earlier for Aparapi samples, define a Classpath
variable, LIBAPARAPI, in the Eclipse IDE, by performing the following steps:

1. From the Eclipse IDE menu bar, select Window > Preferences.

2. Select Java > Build Path > Classpath Variables.

3. Click the NEW > define a new LIBAPARAPI variable button and point it to your local
Aparapi.jar folder.

4. Close the Eclipse IDE.

5. To build the project, open the Eclipse IDE, import the AparapiUtil project, and build the
project.
Similarly, you can import all the Aparapi sample projects and build and execute them.

2.7 OpenCV

2.7.1 Prerequisites

The AMD APP SDK 2.9.1 OpenCV-CL samples work with OpenCV 2.4.9. Download the OpenCV
2.4.9 binaries for Windows from: http://opencv.org/.

The Windows download includes the pre-built OpenCV binaries. However, you can also create
binaries by downloading the source files and building them, as described in Appendix D, “Building
OpenCV from sources”. For answers to frequently asked questions on OpenCV, see the AMD
APP SDK FAQ.

Environment Variables –

Before building and running the OpenCV-CL samples, you must set the following environment
variables:

� Create and set the environmental variable, OPENCV_DIR, to the root directory
containing the OpenCV include and lib files that are extracted from the downloaded
OpenCV package.

� Create and set the environmental variable, OCVCL_VER, to the OpenCV version used
for APP SDK 2.9.1 release, that is, set OCVCL_VER = 249.

� Append the PATH environment variable with the directory containing all the OpenCV
.dll files. For example, for a 64-bit machine with VS 2012, this path will be
%OPENCV_DIR%\x64\vc11\bin.

OpenNI Libraries –

The GestureRecognition APP SDK OpenCV-CL sample makes use of OpenNI libraries to extract
video frames. OpenNI framework is an open source SDK used for the development of 3D sensing
middleware libraries and applications. The OpenNI SDK can be downloaded from
http://structure.io/openni.

You must set the following environment variables:

1. For 32-bit builds, add OPENNI2_REDIST to the PATH environment variable.
For 64-bit builds, add OPENNI2_REDIST64 to the PATH environment variable.

http://opencv.org/
http://opencv.org/
http://structure.io/openni

8 of 19 Getting Started

2. Header and library paths will be added by the OpenNI Windows installer. If those paths are
missing from the system, then the user must set the following environment variables:

i. For 32-bit platforms:
Set OPENNI2_INCLUDE to <<OPENNI-INSTALL_PATH>>\Include
Set OPENNI2_LIB to <<OPENNI-INSTALL_PATH>>\Redist
Add OPENNI2_LIB to the PATH environment variable

ii. For 64-bit platforms:
Set OPENNI2_INCLUDE64 to <<OPENNI-INSTALL_PATH>>\Include
Set OPENNI2_LIB64 to <<OPENNI-INSTALL_PATH>>\Redist
Add OPENNI2_LIB64 to the PATH environment variable

The GestureRecognition sample currently works on only Windows platforms.

2.7.2 How to run the pre-built samples

The AMD APP SDK ships with pre-built binaries of the OpenCV-CL samples. To execute the
samples, you must perform the following steps:

 Open a command prompt.

 Change the directory to the appropriate architecture directory (x86 or x86_64) within
<<APPSDKSamplesInstallPath>>\samples\opencv\bin.

 Run the samples by typing the name of the executables.
To review the command line arguments for samples, see the respective sample documents.

2.7.3 How to rebuild the samples

The AMD APP SDK installation includes a master Visual Studio Solution file for the OpenCV-CL
samples. This solution file contains Visual Studio projects of all the OpenCV-CL samples. In the
current version of APP SDK, master solution files for Microsoft Visual Studio 2010
(OpenCVSamplesVS10.sln) and Microsoft Visual Studio 2012 (OpenCVSamplesVS12.sln)
are provided. These files are located at
$<APPSDKSamplesInstallPath>\samples\opencv\.

To build a sample:

 Open the OpenCVSamplesVS10.sln file or the OpenCVSamplesVS12.sln file.

 Select the appropriate build configuration, Debug or Release.

 To build TBB-enabled Bolt samples, select the corresponding build configuration, Debug_TBB
or Release_TBB.

 To build all the projects, select Build > Build Solution.
To build a specific project, select the project file in the Solutions Explorer and select Build to
build the sample.

Getting Started 9 of 19

3 APP SDK on Linux

3.1 Installation

The AMD APP SDK 2.9.1 installer is delivered as a self-extracting installer for 32-bit and 64-bit
systems on Linux. For details on how to install APP SDK on Linux, see the AMD APP SDK
Installation Notes document.

3.2 General prerequisites

The AMD APP SDK 2.9.1 is supported on the following Linux flavors:

 openSUSE™ 13.1 (32-bit/64-bit)

 Ubuntu® 14.04 (32-bit/64-bit)

 Red Hat® Enterprise Linux® 6.x (32-bit/64-bit)

The AMD APP SDK Linux package includes sample applications for OpenCL, Bolt, Aparapi and
OpenCV-CL. To build and execute these samples, you must ensure that two sets of prerequisites
are met: the common prerequisites that apply to all the samples, listed in this section; and the
specific prerequisites required for the specific category of the samples, listed in the later sections
of this document.

Before you build and execute the samples, ensure that you have installed the following:

 gcc

� The AMD APP SDK samples have been compiled with gcc 4.7.3

 CMake version 2.8.0 or higher

� For details on using CMake to generate make files for the AMD APP SDK samples,
see Appendix C, “CMAKE”.

3.3 OpenCL

3.3.1 Prerequisites

In addition to the common prerequisites mentioned in Section 3.2, “General prerequisites”, to
build and run the OpenCL samples you must ensure the following installation:

 OpenGL package freeglut3-dev

� Required to run AMD APP SDK samples that use OpenGL library

� Ensure that the AMD Catalyst Driver is installed in order to run samples using
OpenGL

� Ensure that the libGL.so.1 file is linked to fglrx-libGL.so.1.2, which is found
in:
Ubuntu: /usr/lib/fglrx/ and /usr/lib32/fglrx/
RHEL: /usr/lib64/fglrx/.
The sample execution fails when linked to:
Ubuntu: /usr/lib/x86_64-linuxgnu/mesa/libGL.so.1, /usr/lib/i386-

http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/07/AMD_APP_SDK_Installation_Notes.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/07/AMD_APP_SDK_Installation_Notes.pdf

10 of 19 Getting Started

linux-nu/mesa/libGL.so.1
RHEL: /usr/lib/libGL.so.1, /usr/lib64/libGL.so.1.

3.3.2 How to run the pre-built samples

The AMD APP SDK ships with pre-built binaries of OpenCL samples. To execute the samples,
you must perform the following steps:

 Open a terminal window.

 Change the directory to the appropriate architecture directory (x86 or x86_64) within
<<APPSDKSamplesInstallPath>>/samples/opencl/bin.

 Run the samples by typing the name of the executables. You may need to prepend the
executable name with ./.
To review the command line arguments for samples, see the respective sample documents.

Note: The prebuilt samples on Linux have been compiled with GCC 4.7.3.

3.3.3 How to rebuild the samples

To compile the AMD APP SDK OpenCL samples, the CMake build tool is required. To build all
the OpenCL samples, run the following commands:

$> cmake -G "Unix Makefiles"
"<APPSDKSamplesInstallPath>/samples/opencl/"
$> make

To build individual samples, run CMake from the respective sample source directory.

For more details on using CMake to generate make files for the AMD APP SDK samples, see
Appendix C, “CMAKE”.

3.4 BOLT

3.4.1 Prerequisites

In addition to the common prerequisites mentioned in Section 3.2, “General prerequisites”, to
build and run the BOLT samples you must ensure the following installations and environment
variable settings:

 The TBB library: http://threadingbuildingblocks.org/download.

� Required for running the Bolt samples using the multi-core CPU path.

� BOLT 1.2 has been tested with the TBB release 4.2 Update 4.

 Download and install the Bolt 1.2 library for Linux from: http://developer.amd.com/tools-
andsdks/opencl-zone/opencl-libraries/bolt-c-template-library/.
Bolt can also be built from the github sources: https://github.com/HSA-
Libraries/Bolt/releases/tag/v1.2GA.

Environment Variables –

Set the following environment variables:

http://developer.amd.com/tools-andsdks/opencl-zone/opencl-libraries/bolt-c-template-library/
Open the OpenCLSamplesVS10.sln file with Microsoft Visual Studio 2010 Professional Edition or the OpenCLSamplesVS12.sln file with Microsoft Visual Studio 2012 Professional Edition.
Righ
https://github.com/HSA-Libraries/Bolt/releases/tag/v1.2GA

Getting Started 11 of 19

 Set and export the TBB_ROOT environmental variable to the root directory of the installed TBB
binaries.

 Set and export the BOLTLIB_DIR environmental variable to the root directory to which Bolt
is extracted.

 Append the LD_LIBRARY_PATH environment variable with the directory containing all the
TBB binaries. For example, on a 64-bit machine, this path can be:
/home/<user>/downloads/TBB/tbb42_xxxxyyzzoss/lib/intel64/gcc<majorVer
sion.minorVersion>.

3.4.2 How to run the pre-built samples

The AMD APP SDK ships with pre-built binaries of BOLT samples. To execute the samples, you
must perform the following steps:

 Open a terminal window.

 Change the directory to the appropriate directory (x86 or x86_64) within
<<APPSDKSamplesInstallPath>>/samples/bolt/bin.

 Run the samples by typing the name of their executables. You may need to prepend the
name of the executable with ./.
To review the command line arguments for samples, see the respective sample documents.

3.4.3 How to rebuild the samples

To compile the AMD APP SDK Bolt samples, the CMake build tool is required. To build all the
OpenCL samples, run the following commands:

$> cmake -G "Unix Makefiles" "<APPSDKSamplesInstallPath>/samples/bolt/"
$> make

To build individual samples, run CMake from the respective sample source directory.

To build a Bolt sample with the TBB multicore option enabled, use the ENABLE_TBB flag.

For example:

$> cmake -G "Unix Makefiles" -DENABLE_TBB=ON
"<APPSDKSamplesInstallPath>samples/bolt/BoltSort/"
$> make

For more details on using CMake to generate make files for the AMD APP SDK samples, see
Appendix C, “CMAKE”.

3.5 Aparapi

The samples for Aparapi are different from the samples for the other platforms in that all the
Aparapi samples use Java. Eclipse can be used to build and execute Aparapi samples.

12 of 19 Getting Started

3.5.1 Prerequisites

In addition to the common prerequisites mentioned in Section 3.2, “General prerequisites”, to
build and run the Aparapi samples you must ensure the following installations and environment
variable settings:

Installations –

 Install the Java JDK: http://www.oracle.com/technetwork/java/javase/downloads/jdk7-
downloads-1880260.html.

 Install the ANT build tool: https://ant.apache.org/bindownload.cgi.

 Install the Aparapi library. The AMD APP SDK 2.9.1 Aparapi samples work with the latest
Aparapi trunk source in the link
http://code.google.com/p/aparapi/source/browse/#svn%2Ftrunk. Source files from this link
must be fetched and built. The procedure to compile the sources is provided in the wiki pages
of Aparapi:

� https://code.google.com/p/aparapi/wiki/DevelopersGuideLinux

Environment Variables –

 Set and export JAVA_HOME to the directory containing JRE/JDK.
For example, JAVA_HOME=/home/<user>/downloads/Java/jdk1.7.0_55.

 Set ANT_HOME to the directory containing ANT, version 1.8 or above.
For example, if ANT is installed under /home/<user>/downloads/ANT, set
ANT_HOME=/home/<user>/downloads/Ant/apache-ant-1.9.3.

 Set and export LIBAPARAPI to the directory in which the Aparapi binaries (aparapi.jar)
are created after compiling.
For example, specify: LIBAPARAPI = /home/<user>/downloads/Aparapi/.

 Append and export the PATH environment variable to the directory containing the Java, ANT,
and Aparapi binaries, i.e. $JAVA_HOME/bin and $ANT_HOME/bin.

 If running from Eclipse, set LD_LIBRARY_PATH to the $LIBAPARAPI environment variable
(set in the previous step).

Other settings –

In addition, you must ensure that the default Java version is 1.7.0_55. This can be known by
typing the java -version command. If for some reason the Java version is different, follow
the below steps to set the correct Java version:

 Run update-alternatives and set the installed Oracle Java 7 to highest priority.
sudo update-alternatives --install "/usr/bin/java" "java"
"$JDKDIRECTORY/bin/java" 1
sudo update-alternatives --install "/usr/bin/javac" "javac"
"$JDKDIRECTORY/bin/javac" 1
sudo update-alternatives --install "/usr/bin/javaws" "javaws"
"$JDKDIRECTORY/bin/javaws" 1

 Set the permissions.
sudo chmod a+x /usr/bin/java

https://code.google.com/p/aparapi/wiki/DevelopersGuideWindows
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
https://ant.apache.org/bindownload.cgi
http://code.google.com/p/aparapi/source/browse/#svn%2Ftrunk
https://code.google.com/p/aparapi/wiki/DevelopersGuideWindows

Getting Started 13 of 19

sudo chmod a+x /usr/bin/javac
sudo chmod a+x /usr/bin/javaws

 Update to the highest priority link.
sudo update-alternatives --auto java

Now check whether java -version returns the desired version.

3.5.2 How to run the pre-built samples

The prebuilt jar files for the Aparapi samples are located in the respective sample directory. For
example, the Mandel prebuilt jar file for the Mandel sample is located under:
$<APPSDKSamplesInstallPath>/samples/aparapi/examples/Mandel/.

To execute the sample, run the appropriate <example>.sh from the terminal.
./<example>.sh -h lists the command-line options provided by the sample.

3.5.3 How to rebuild the samples

In order to build all the samples, run the build.sh batch file under
$<APPSDKSamplesInstallPath>/samples/aparapi.

To build individual samples, go to the respective sample directory and type ant.
For example, to compile the Mandel sample, run:
$<APPSDKSamplesInstallPath>/samples/aparapi/examples/Mandel> ant

3.6 OpenCV

3.6.1 Prerequisites

In addition to the common prerequisites mentioned in Section 3.2, “General prerequisites”, to
build and run the OpenCV-CL samples you must ensure the following installations and
environment variable settings:

Installations –

 Download the OpenCV 2.4.9 source from: http://opencv.org/.
The AMD APP SDK 2.9.1 OpenCV-CL samples work with OpenCV 2.4.9.

 Compile the downloaded source files to generate the OpenCV binaries, as described in
Appendix D, “Building OpenCV from sources”. For answers to frequently asked questions on
OpenCV, see the AMD APP SDK FAQ.

 Install the Libgtk2.0-dev and pkg-config packages.

Environment Variables –

Before building and running the AMD APP SDK OpenCV-CL samples, you must set the following
environment variables after generating the OpenCV binaries. Assuming that the generated
OpenCV binaries are generated under the =/usr/local/ directory:

� Set and export OPENCV_DIR to the root directory containing the OpenCV include and
lib files. For example, OPENCV_DIR=/usr/local/.

http://opencv.org/

14 of 19 Getting Started

� Set and export OCVCL_VER to the OpenCV version used for the AMD APP SDK 2.9.1
release, i.e., set OCVCL_VER = 249.

� Set LD_LIBRARY_PATH to the directory containing the OpenCV library files. For
example, assign LD_LIBRARY_PATH to /usr/local/lib.

3.6.2 How to run the pre-built samples

The AMD APP SDK ships with pre-built binaries of the OpenCV-CL samples. To execute the
samples, you must perform the following steps:

 Open a terminal window.

 Change the directory to the appropriate architecture directory (x86 or x86_64) within
<<APPSDKSamplesInstallPath>>/samples/opencv/bin.

 Run the samples by typing the name of the executables. You may need to prepend the name
of the executable with ./.
To review the command line arguments for samples, see the respective sample documents.

3.6.3 How to rebuild the samples

To compile the AMD APP SDK OpenCV-CL samples, the CMake build tool is required. To build
all the OpenCL samples, run the following commands:

$> cmake -G "Unix Makefiles"
"<APPSDKSamplesInstallPath>/samples/opencv/"
$> make

To build individual samples, run CMake from the respective sample source directory.

For more details on using CMake to generate make files for the AMD APP SDK samples, see
Appendix C, “CMAKE”.

Getting Started 15 of 19

Appendix A Important Notes

 Unless specifically recommended otherwise, developers must use the latest graphics drivers
for their platform. These drivers can be downloaded from http://support.amd.com/en-
us/download.

For current recommendations, see http://developer.amd.com/tools-and-sdks/opencl-
zone/opencl-tools-sdks/amd-accelerated-parallel-processing-app-sdk/system-requirements-
driver-compatibility/.

 The following values are returned when querying strings from OpenCL:

CL_PLATFORM_VERSION: OpenCL 1.2 AMD-APP (build.revision)
CL_PLATFORM_NAME: AMD Accelerated Parallel Processing
CL_PLATFORM_VENDOR: Advanced Micro Devices, Inc.

Check the Platform Vendor string, not the Platform Name, to determine AMD hardware. For
example code that shows how to check and use the CL_PLATFORM_VENDOR string, see the AMD
APP OpenCL samples.

Appendix B Supported Devices

AMD is continually qualifying devices. For an up-to-date list of supported devices, please visit the
APP SDK System Requirement and Driver Compatibility page.

Appendix C CMAKE

Getting started with CMake:

Starting with APP SDK 2.9, the build tool used in the APP SDK is CMake. CMake supports
creating make files across different platforms and generating project files across different IDEs
including Visual Studio and Eclipse. In order to use CMake with APP SDK, the CMake binaries
must be downloaded.

1. CMake binaries can be found at: http://www.cmake.org/cmake/resources/software.html.

2. The following page describes how to build a project for Windows and Linux using CMake:
http://www.cmake.org/cmake/help/runningcmake.html.

Quick links to download:

1. For Windows: Download the latest CMake from:
http://www.cmake.org/cmake/resources/software.html.

2. For Linux: The "sudo apt-get install cmake" command will install the cmake binaries.

Note: The APP SDK 2.9.1 package for Windows includes Visual Studio 2010 and 2012 projects
in addition to the CMake files. Developers can use the project files for building and for
development. Visual Studio 2013 projects are not provided in the AMD APP SDK package.
However, the CMake files of the samples can be used to generate VS 2013 project files.

http://developer.amd.com/tools-and-sdks/opencl-zone/opencl-tools-sdks/amd-accelerated-parallel-processing-app-sdk/system-requirements-driver-compatibility/
http://support.amd.com/en-us/download
http://support.amd.com/en-us/download
http://developer.amd.com/tools-and-sdks/opencl-zone/opencl-tools-sdks/amd-accelerated-parallel-processing-app-sdk/system-requirements-driver-compatibility/
http://developer.amd.com/tools-and-sdks/opencl-zone/opencl-tools-sdks/amd-accelerated-parallel-processing-app-sdk/system-requirements-driver-compatibility/
http://developer.amd.com/tools-and-sdks/opencl-zone/opencl-tools-sdks/amd-accelerated-parallel-processing-app-sdk/system-requirements-driver-compatibility/
http://www.cmake.org/cmake/resources/software.html
http://www.cmake.org/cmake/help/runningcmake.html
http://www.cmake.org/cmake/resources/software.html.

16 of 19 Getting Started

Building an APP SDK sample using CMake:

Before using CMake to generate Visual Studio projects or makefiles for any sample, ensure that
all the environment variables required for the particular sample are set. For example, if CMake
is to be used for any Bolt sample, all the environment variables corresponding to Bolt headers
and libraries must be set. The later sections in this document specify which environment variables
must be set for each category of samples.

a. Windows: Generating Visual Studio project files –

Developers can create Visual Studio project files for the sample individually or for all of them
together. To create the project files individually, CMake must be run by specifying the
corresponding sample directory. For example, if you want to create the Visual studio 2012
solution file for the AtomicCounters OpenCL sample, then the corresponding command is:

For 32 bit:

cmake.exe -G "Visual Studio 11" "<path to the AtomicCounters sample source>"

For 64 bit:

cmake.exe -G "Visual Studio 11 Win64" "<path the to the AtomicCounters sample
source>"

It is recommended to create another directory under the sample and run CMake from there.
CMake creates a few additional files and projects apart from the main sample project. Hence
running CMake from a sub-directory will keep the project files separate from the sample source
files. If run from a subdirectory, the command will change as follows:

cmake.exe .. -G "Visual Studio 11" "<path to the sub-directory inside the
AtomicCounters sample source folder>"

To build all the OpenCL samples, run the following command

For 32 bit:

cmake -G "Visual Studio 11" "<APPSDKSamplesInstallPath>/samples/opencl/"

For 64 bit:

cmake -G "Visual Studio 11 Win64" "<APPSDKSamplesInstallPath>/samples/opencl/"

Alternatively, cmake-gui can also be used to build the samples.

b. Linux: Generating Makefiles –

To generate the Makefiles, the same commands mentioned in the Windows section can be used
except that the "Generator" name must be changed from the Visual Studio variant to the Unix
variant.

For example, to build all the OpenCL samples, run the following command:

cmake -G "Unix Makefiles" "<APPSDKSamplesInstallPath>/samples/opencl/"

CMAKE APP SDK-SPECIFIC OPTIONS:

1. BUILD_OPENCL: ON/OFF - Builds OpenCL samples. Default is ON.

Getting Started 17 of 19

2. BUILD_OPENCV: ON/OFF - Builds OpenCV samples .Default is ON.

3. BUILD_AMP: ON/OFF - Builds C++ AMP samples. Default is ON.

4. BUILD_BOLT: ON/OFF - Builds Bolt samples. Default is ON.

5. ENABLE_TBB: ON/OFF - Builds all Bolt samples with the multicore option enabled. Default
is OFF.

For example, to build all the samples except OpenCV samples, use -DBUILD_OPENCV=OFF as
an argument to cmake or deselect the corresponding box in cmake-gui.

cmake -G "Unix Makefiles" -DBUILD_OPENCV=OFF <APPSDKSamplesInstallPath>

Note: The APP SDK samples have been tested with the following generators in CMake

1. Visual Studio 2010

2. Visual Studio 2012

3. Visual Studio 2013

4. NMake Makefiles

5. Unix Makefiles

Appendix D Building OpenCV from sources

To build the OpenCV binaries from the sources, perform the following actions:

Building OpenCV from sources

To build the OpenCV binaries from the sources, perform the following actions:

1. Build the OpenCV library from the source files.
The OpenCV sources for the 2.4.9 build are available at
https://github.com/Itseez/opencv/tree/2.4.9. To have OpenCL support for OpenCV, the
opencv_ocl library must be built. During configuring with CMake, select the WITH_OPENCL
option and provide the path of the OpenCL library (libOpenCL.so in Linux and
OpenCL.lib in Windows). The following links from opencv.org are useful:

� Linux: http://docs.opencv.org/doc/tutorials/introduction/linux_install/linux_install.html

� Windows:
http://docs.opencv.org/doc/tutorials/introduction/windows_install/windows_install.html

2. Set the correct directory structure.
On Windows, the directory structure of the complied OpenCV binaries created in the
preceding step must be restructured as per the OpenCV prebuilt directory structure.
Restructure the OpenCV binaries created from sources as per the prebuilt directory structure
for Windows as shown in the following figure. Place the created include directly under the
root OpenCV directory and copy the bin and lib files (both debug and release versions)
into the following locations:

� x86/vc10, if your binaries and libraries are built with Microsoft Visual Studio 10 and
the target is x86.

https://github.com/Itseez/opencv/tree/2.4.9
http://docs.opencv.org/doc/tutorials/introduction/linux_install/linux_install.html
http://docs.opencv.org/doc/tutorials/introduction/windows_install/windows_install.html
http://docs.opencv.org/doc/tutorials/introduction/windows_install/windows_install.html

18 of 19 Getting Started

� x86/vc11, if your binaries and libraries are built with Microsoft Visual Studio 12 and
the target is x86.

� x86/vc12, if your binaries and libraries are built with Microsoft Visual Studio 13 and
the target is x86.

� x64/vc10 if your binaries and libraries are built with Microsoft Visual Studio 10 and
the target is x64.

� x64/vc11 if your binaries and libraries are built with Microsoft Visual Studio 12 and
the target is x64.

� x64/vc12 if your binaries and libraries are built with Microsoft Visual Studio 13 and
the target is x64.

Alternatively, you may skip restructuring the directory as per the OpenCV pre-builts, in which
case, the Visual Studio property sheets of the OpenCV-CL projects must be updated to point to
the correct paths.

For Linux, retain the default directory structure of the OpenCV binaries created from the sources.

AMD’s products are not designed, intended, authorized or warranted for use as
components in systems intended for surgical implant into the body, or in other
applications intended to support or sustain life, or in any other application in
which the failure of AMD’s product could create a situation where personal injury,
death, or severe property or environmental damage may occur. AMD reserves
the right to discontinue or make changes to its products at any time without
notice.
Copyright and Trademarks
© 2014 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow
logo, ATI, the ATI logo, Radeon, FireStream, and combinations thereof are trade-
marks of Advanced Micro Devices, Inc. OpenCL and the OpenCL logo are trade-
marks of Apple Inc. used by permission by Khronos. Other names are for infor-
mational purposes only and may be trademarks of their respective owners.

The contents of this document are provided in connection with Advanced
Micro Devices, Inc. (“AMD”) products. AMD makes no representations or
warranties with respect to the accuracy or completeness of the contents of
this publication and reserves the right to make changes to specifications and
product descriptions at any time without notice. The information contained
herein may be of a preliminary or advance nature and is subject to change
without notice. No license, whether express, implied, arising by estoppel or
otherwise, to any intellectual property rights is granted by this publication.
Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD
assumes no liability whatsoever, and disclaims any express or implied war-
ranty, relating to its products including, but not limited to, the implied war-
ranty of merchantability, fitness for a particular purpose, or infringement of
any intellectual property right.

Contact Advanced Micro Devices, Inc.
One AMD Place
P.O. Box 3453
Sunnyvale, CA, 94088-3453
Phone: +1.408.749.4000

19 of 19 Getting Started

For AMD Accelerated Parallel Processing:

URL: developer.amd.com/appsdk
Developing: developer.amd.com/
Forum: developer.amd.com/openclforum

http://developer.amd.com/appsdk
http://developer.amd.com/
http://developer.amd.com/openclforum

	Getting Started
	1 Overview
	2 APP SDK on Windows
	2.1 Installation
	2.2 General Prerequisites
	2.3 OpenCL
	2.4 BOLT
	2.5 C++ AMP
	2.6 Aparapi
	2.7 OpenCV

	3 APP SDK on Linux
	3.1 Installation
	3.2 General prerequisites
	3.3 OpenCL
	3.4 BOLT
	3.5 Aparapi
	3.6 OpenCV

	Appendix A Important Notes
	Appendix B Supported Devices
	Appendix C CMAKE
	Appendix D Building OpenCV from sources

