

Storage technologies: brief summary

Technology	Maturity	Price	Consistency	Supported host OS
Hardware RAID	Mature	High	None	In theory, any. In practice, Linux (kernel support) and Windows (vendor-specific drivers) only.
mdadm+LVM	Mature	Zero	None	Linux only
ReFS+StorageSpaces	Young	Moderate	High	Windows only
Btrfs	Young	Zero	High	Linux only
ZFS	Mature	Zero	High	Solaris ¹ , FreeBSD ² , MacOS ³ , Linux ⁴

Notes:

- ¹ Origin.
- ² First port. Very mature.
- ³ Currently not supported on bare metal.
- ⁴ Thanks to LLNL and OpenZFS team.

Technology	Access to physical drives	Simplicity of monitoring
Hardware RAID	Host OS does not have access to physical drives.	Hard to monitor. Vendor- specific tools required.
mdadm+LVM	Required. Physical drives	Open source tools available (e.g. smartmontools).
ReFS+StorageSpaces	must be accessible from the	
btrfs	host OS (motherboard ports or HBA controller).	
ZFS	0. 1.27 (0011ti 01101)1	

RAID levels

Level	Redundancy	Pros	Cons
RAID 0 (stripe)	None	Size = N * DriveSize (where N is number of drives). Maximum possible performance.	Zero fault tolerance, should only be used for "zero-price" data.
RAID 1 (mirror)	It depends	If N > 2, then redundancy is maximum possible. High read performance.	Size = DriveSize Size always equals to the size of single drive.
RAID 10 (stripe of mirrors)	Moderate	Size = N * DriveSize / 2 High performance.	In theory, redundancy is lost after the failure of one drive (in practice, when N is large, after such a failure only "Russian roulette" starts).
RAID 5	Moderate	Size = $(N - 1)$ * DriveSize	Minimal redundancy (but still fault tolerant). Should not be used when N ~ 7 or more.
RAID 6	Always high	Size = $(N - 2)$ * DriveSize	In case of N ~ 12 none. Should not be used when N ~ 20 or more.

Terminology.

Note: some technologies (ZFS at least) allow to create exotic configurations, e.g. RAID 50 (stripe of RAID 5), RAID 60 or even RAID7.

[&]quot;Hot spare" is the failover mechanism to provide extra reliability.

[&]quot;Hot spare drive" is the drive which is automatically switched into operation in case of active drive failure.

Choices for DELL R750xs with PERC 755

Hardware state: seven front panel disks connected to PERC 755 (instead of PERC 355 which was requested by Skoltech).

PERC 755 can only operate in RAID (not HBA) mode.

As a consequence, **only one technology can be used**: **hardware RAID** (see first line on slide 2). The most advanced technology – ZFS – **is not available** (ZFS **as file system can still be used**, providing high consistency, snapshots, clones, high speed compression, etc.)

Three variants of configuration can be proposed.

- 1. Minimal redundancy: RAID 5 of all 7 disks. Available size 22 TB.
- 2. Moderate redundancy: RAID 6 of all 7 disks. Available size 18 TB.
- 3. Maximal redundancy: RAID 6 of 6 disks plus hot spare. Available size 14 TB.

Note: in case of ZFS over RAID (possible, though suboptimal configuration) and fast Iz4 compression, the effective available space can be approximately doubled.

Skoltech