

#### Does it matter to user?

#### Of cause not!

The user does not matter what storage technology lies behind his job.

It's the admin's job to prevent data loss.

#### Data integrity is the key point

 Ultimate condition: failure of storage device(s) should not lead to massive data loss or corruption  There should also be the way to replace failed storage devices online  And we have to be sure we got exactly what was stored

Redundancy



**Availability** 



Consistency



# Technologies: brief summary

| Technology         | Maturity | Price    | Consistency | Host OS                                                                               |
|--------------------|----------|----------|-------------|---------------------------------------------------------------------------------------|
| Hardware RAID      | Mature   | High     | So-so       | Any (in practice, only Windows and Linux)                                             |
| mdadm+LVM          | Mature   | Zero     | None        | Linux                                                                                 |
| ReFS+StorageSpaces | Young    | Moderate | High        | Windows                                                                               |
| btrfs              | Young    | Zero     | High        | Linux                                                                                 |
| ZFS                | Mature   | Zero     | High        | Solaris <sup>1</sup> , FreeBSD <sup>2</sup> , MacOS <sup>3</sup> , Linux <sup>4</sup> |

#### Notes:

- <sup>1</sup> Origin.
- <sup>2</sup> First port. Very mature.
- <sup>3</sup> Currently not supported on bare metal.
- <sup>4</sup> Thanks to LLNL and OpenZFS team.

### Choose wisely!

# Further googling:

hardware raid vs mdadm zfs vs mdadm zfs vs btrfs zfs vs xfs hardware raid vs hba zfs over hardware raid